Edexcel Maths M4

Mark Scheme Pack

2002-2015

PhysicsAndMathsTutor.com

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject MECHANICS 6680

.

-

ł,

Question number	Scheme	Marks	
1. (a)	Complete method for speed of current e.g = $\frac{25m}{30s}$ or find V(1.57), $\theta(32^\circ)$ and use V sin θ or equiv.	MI	
	$= 503 \text{ ms}^{-1} \text{ or } 0.83(3) \text{ ms}^{-1}$	A1	(2)
(b	6 (A) Complete method for speed of swimmer	MI	
\mathbb{Y}	e.g. = $\frac{40\text{m}}{30\text{s}}$ or $\sqrt{\{V^2 - (a)^2\}}$ or $V_c \sin \theta_c$		
	$= \frac{4}{3} \text{ ms}^{-1} \text{ or } 1.3(3) \text{ ms}^{-1}$	A1	(2)
2.	Equation of motion: $-mg - mkv = ma$; $\frac{dv}{dt} = -(g + kv)$	(M);A1	
	Separating variables: $\int dt = -\int \frac{dv}{g+kv}$	MI	
	Integrating $t = \{ H \frac{1}{k} [\ln(g + kv)] (+c) \}$	ΥAI	
	Using limits to give $T = \frac{1}{k} [\ln (g + kv)]_0^u$ or using limits $[t=0, v=u]$ to find c:	MI)A1∕	
\bigcirc	Completing to give $T = \frac{1}{k} \ln(\frac{g+ku}{g})$	MIAI	(8)
	[Mark finding greatest height as Mr]		 .
3. (a)	Parallel to plane: $u \sin \theta = V \cos \theta$	M AI	
	V θ Perpendicular to plane: $e u \cos \theta = V \sin \theta$	MIAI	
	$\frac{\theta}{1} \qquad \qquad \text{Eliminating } u \text{ and } V: \qquad e \cot \theta = \tan \theta$	MI)	
	Given result: $e = \tan^2 \theta *$	AI	(6)
(b)	Impulse = change in momentum = $m (V \sin \theta + u \cos \theta)$	[M]]11	
	Expression in <i>m</i> , <i>u</i> and θ : = $m(e u \cos \theta + u \cos \theta) = mu \cos \theta (1 + \tan^2 \theta)$	ĽM)	
	or $= mu\left(\frac{\sin^2\theta}{\cos\theta} + \cos\theta\right)$		
	Completion $= mu \sec \theta *$	A1	(4)

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject MECHANICS 6680

Question number	Scheme	Marks
4. (a)	Using velocity diagram $\frac{\sin \theta}{1500} = \frac{\sin 45^{\circ}}{2000}$ $\frac{1}{1500} = \frac{1500}{\theta} = 32^{\circ} (32.03)$ Bearing = 90° - (45° + θ) = 013°	MI)A1 MI)A1 MI)A1 (6)
(b)	Method for v : e.g. (i) $v^2 = 1500^2 + 2000^2 - 2.1500.2000$. cos (90 + 13 _c)° or (ii) $v \cos 45^\circ = 2000 \cos 13_c^\circ$ or (iii) $\sin 45^\circ = \frac{\sin 103^\circ}{\cos^2}$	M1A1√
	$\frac{2000 v}{v = 2756 \text{ km h}^{-1}}$ Time = $\frac{100}{v}$ h = 131 s	\ M1A1 (5)
	[Time = $\frac{100 \cos 45^{\circ}}{2000 \cos 13_{c}^{\circ}}$ gains M1M1A1 immediately, correct answer gains A2] Using displacement method (several variations) (i) In the case below α is bearing; but other relevant angle may be used One equation in t and α : e.g. 2000 t sin $\alpha = 50\sqrt{2} - 1500 t$ Second equation in t and α : e.g. 2000 t cos $\alpha = 50\sqrt{2}$ Equation in one variable: e.g. $4 \cos \alpha - 4 \sin \alpha = 3$ Reducing to simple equation e.g. $4\sqrt{2} \cos (\alpha + 45^{\circ}) = 3$ Bearing = (0)13°	M1A1 M1A1 M1A1 M1A1√ A1
	Sustituting for α to find t ; $t = 131 s$ (ii) Using cosine rule: $(2000t)^2 = (1500t)^2 + 100^2 - 2.100.1500t \varsigma \omega^{1} S^{\circ}$ Quadratic form: $175t^2 + 15\sqrt{2}t - 1 = 0$ Solving : $t = 131s$ Equation in t and α Bearing = (0)13°	M1A1 M2A1A1 M1A1 √ M1A1 M1A1 A1

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject MECHANICS 6680

usie

ņ

Juno

Juno

km

5

 $4\sin^2\theta + 2(1-\sin^2\theta) = 3$

Question

number

5. (a)

(b)

Scheme Marks CLM: $mu \cos \theta = kmv$ NIL: $eu \cos \theta = v$ 41 Eliminating θ , **A**1 (6) $\frac{1}{2}mv_{a}^{2} + \frac{1}{2}(2m)(\frac{1}{2}u\cos\theta)^{2} = \frac{3}{4}.\frac{1}{2}mu^{2} \quad (\text{ or equivalent})$ $\frac{1}{2}m(u\sin\theta)^2 + \frac{1}{2}(2m)(\frac{1}{2}u\cos\theta)^2 = \frac{3}{4}\cdot\frac{1}{2}mu^2 \quad [M1 \text{ for } v_a = u\sin\theta]$)A1√ $[4\sin^2\theta + 2\cos^2\theta = 3]$

e = 1

 $\sin^2\theta = \frac{1}{2}$

θ

k

$$\left[\frac{1}{2}m(u\cos\theta)^2 - \frac{1}{2}(2m)(\frac{1}{2}u\cos\theta)^2 = \frac{1}{4}\frac{1}{2}mu^2 \text{ accepted for first 4 marks unless it is clear that candidate is working along line of centres only;}\right]$$

e.g. $\frac{1}{2}m(u\cos\theta)^2 - \frac{1}{2}(2m)(\frac{1}{2}u\cos\theta)^2 = \frac{1}{4}\frac{1}{2}m(u\cos\theta)^2$, then max M1]

6. (a)
$$\frac{3mv}{k} = \frac{7}{L} = \frac{2mL}{L} x$$

$$\Rightarrow x + 3x + 2x = 0 *$$
(b) A.E. $m^2 + 3m + 2 = 0 \Rightarrow m = -1 \text{ or } -2$
G.S. $x = A e^{-t} + B e^{-2t}$
 $t = 0, x = 2: \Rightarrow A + B = 2$
Differentiating $x = -A e^{-t} - 2B e^{-2t}$
 $t = 0, x = -4: \Rightarrow A + 2B = 4$ (any equivalent form)
Correctly solving simultaneous equations $(A = 0, B = 2)$
 $x = 2 e^{-2t}$
(c) $x = \frac{1}{2} e^{-2t}$
Shape $(0,2), x = 0$ asymptote TATM correct
HIM (8)
BI
(1)
(a) No, with reason, e.g. P always moving
(b) A.E. $m^2 + 3m + 2 = 0 \Rightarrow m = -1 \text{ or } -2$
(c) $x = 2e^{-2t}$
(c) $x = -4: \Rightarrow A + 2B = 4$ (any equivalent form)
Correctly solving simultaneous equations $(A = 0, B = 2)$
(c) $x = 2e^{-2t}$
Shape $(0,2), x = 0$ asymptote TATM correct
BI (2)

(6)

A1

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject MECHANICS 6680

1

Paper No. M4

Question number	Scheme	Marks
7. (a)	EPE: $\frac{1}{2} mg \frac{(ext)^2}{4a}$	M1 B1
4	$\begin{bmatrix} 4a \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	MAI
Ť	$\Rightarrow EPE = \frac{1}{2} mga[5 - 4\cos\theta - 2\{\sqrt{(5 - 4\cos\theta)}\} + 1]$	MIAI
	$\gamma = O(E + E(C))$ applied	M 1
	$= mga\{-\cos \theta - \sqrt{(5-4\cos \theta)+3}\} + C \qquad (\sqrt{dep. on all Ms})$	A1√
	$= mga\{-\cos \theta - \sqrt{(5-4\cos \theta)}\} + \text{constant} * (\text{no errors seen})$	A1 (9)
(b	$\frac{dV}{d\theta} = mga \left\{ \sin \theta - \frac{4\sin \theta}{2\sqrt{5 - 4\cos \theta}} \right\}$	MIAI
	$\frac{dV}{d\theta} = 0 ; \qquad [\sin\theta \{ \sqrt{(5-4\cos\theta)} - 2\} = 0]$	(MI)
	$\Rightarrow \sin \theta = 0$ or $\sqrt{(5 - 4 \cos \theta)} = 2$,
Í	$\Rightarrow \theta = 0 \text{ or } \pi (0^{\circ} \text{ or } 180^{\circ})$	Al
	\Rightarrow or $\theta = \cos^{-1}(\frac{1}{4}) = 1.32 (75.5^{\circ})$	(MI)A1 (6)

PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
1.	i components: 3 $2 \text{ kg} \overset{\rightarrow}{(A)} \overset{\leftarrow}{(B)} 3 \text{ kg} \overset{\leftarrow}{(E)} 3 \text$	
	Momentum $\leftarrow \rightarrow : 2 \times 3 - 3u_1 = -2 \times 2 + 3v_1$	M1
	NLI: $10 = 3u_1 + 3v_1$	A1
	$\frac{1}{2}(3+u_1)=2+v_1$	M1
	$1 = u_1 - 2v_1$	A1
	Solve for u_1 , $23 = 9u_1 \implies u_1 = \frac{23}{9}$	M1 A1
	j component = $-u_1 \tan \alpha = -\frac{46}{9}$	M1 A1 ft
	Hence $\mathbf{u}_B = -\frac{23}{9}\mathbf{i} - \frac{46}{9}\mathbf{j}$	A1
		(9 marks)
2.	$A \qquad {}_{B}\mathbf{v}_{A} \qquad B \qquad {}_{B}\mathbf{v}_{A} \mathrm{as} \leftarrow$	M1
	$\Box = \frac{1}{\sqrt{30^{\circ}}} \qquad \text{Correct } \Delta \text{ for } \mathbf{v}_B \text{ minimum}$	M1
	$v = 30 \sin 30^\circ = 15 \text{ km h}^{-1}$	A1 (3)
	$_{B}\mathbf{v}_{A}$ Correct Δ	M1
	$\frac{30^{\circ}}{\sin \alpha} = \frac{24}{\sin 30^{\circ}}$	M1
	$24 \qquad \qquad$	A1
	$ _{B}\mathbf{v}_{A} = 30\cos 30^{\circ} + 24\cos \alpha$	M1 A1
	(≈ 44.716)	
	$T = \frac{20}{44.716} \approx 0.4473$	M1
	\Rightarrow 0927 hrs (awrt)	A1 (7)
		(10 marks)

(ft = follow through mark; awrt = anything which rounds to)

Question Number		Marks	
3. (4	$\longrightarrow \frac{1}{dt}$		
	$kv \leftarrow \longrightarrow \frac{32000}{v}$		
	$800 \ \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{32000}{v} - kv$	M1 A1	
	$\Rightarrow 800v \frac{\mathrm{d}v}{\mathrm{d}t} = 32000 - kv^2 (*)$	A1	(3)
(1	$v = 40, \frac{\mathrm{d}v}{\mathrm{d}t} = 0 \implies 32000 = k \times 40^2$	M1	
	$\Rightarrow k = 20$	A1	(2)
(4	$\int dt = 800 \int \frac{v dv}{32000 - 20v^2} = \int \frac{40v dv}{1600 - v^2}$	M1	
	$t = -20 \ln (1600 - v^2) (+ C)$	M1 A1 ft	
	$t = 0, v = 0 \implies C = 20 \ln 1600$ (or use of limits)		
	$t = 20 \ln 1600 - 20 \ln (1600 - v^2)$	M1 A1 ft	
	$\Rightarrow t = 20 \ln \left(\frac{1600}{1600 - v^2}\right)$		
	$\frac{1600}{1600 - v^2} = e^{\frac{t}{20}}$	M1	
	$1600 \mathrm{e}^{-\frac{t}{20}} = 1600 - v^2$		
	$v = 40 \sqrt{\left(1 - e^{-\frac{t}{20}}\right)}$	A1	(7)
		(12 mar	ks)

((*) indicates answer is given on the examination paper)

Ques Nun		Scheme	Marks
4.	(<i>a</i>)	$AC = 4a \cos \theta \Rightarrow$ extension in spring = $4a \cos \theta - 2a$	B1
		$V = -2mga\cos\theta - 2mg \times 3a\cos\theta + \frac{4mg}{4a}(4a\cos\theta - 2a) \ (+C)$	M1 A1 A1
		$= -8mga\cos\theta + 4mg(2\cos\theta - 1)^2 (+C)$	
		$=4mga[(2\cos\theta - 1)^2 - 2\cos\theta] \ (+C)$	A1 (5)
	(<i>b</i>)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = 4mga[2(2\cos\theta - 1)(-2\sin\theta) + 2\sin\theta)]$	M1 A1
		$=8mga\sin\theta(3-4\cos\theta)$	
		$=0 \implies \cos \theta = \frac{3}{4} \ (\theta \neq 0, \pi)$	M1 A1
		$\Rightarrow \theta = 0.723$	A1 (4)
	(c)	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = 8mga\cos\theta(3-4\cos\theta) + 32mga\sin^2\theta$	M1 A1
		as $\theta = \frac{3}{4} \Rightarrow \frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = 0 + 32mga \times \frac{7}{16}$	M1
		= 14mga	
		$> 0 \implies$ stable	A1 (4)
			(13 marks)

PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
5. (<i>a</i>)	$\mathbf{r}_P = \begin{pmatrix} 1\\-2\\3 \end{pmatrix} + t \begin{pmatrix} 1\\2\\-1 \end{pmatrix} \qquad \mathbf{r}_Q = \begin{pmatrix} -1\\2\\-1 \end{pmatrix} + t \begin{pmatrix} 2\\0\\1 \end{pmatrix}$	B1 (either)
	$ \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} + t \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} $	M1
	$\Rightarrow t = 2$ (one component)	A1
	showing true for all components \Rightarrow collide	M1
	$\mathbf{r} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$	A1 (5)
(b)	$\mathbf{v}_R - \mathbf{v}_P = \lambda \begin{pmatrix} -5 \\ 4 \\ -1 \end{pmatrix}, \mathbf{v}_R - \mathbf{v}_Q = \mu \begin{pmatrix} -2 \\ 2 \\ -1 \end{pmatrix}$	B1
	$\mathbf{v}_{\mathcal{Q}} - \mathbf{v}_{P} = \begin{pmatrix} 2\\0\\1 \end{pmatrix} - \begin{pmatrix} 1\\2\\-1 \end{pmatrix} = \lambda \begin{pmatrix} -5\\4\\-1 \end{pmatrix} - \mu \begin{pmatrix} -2\\2\\-1 \end{pmatrix}$	M1
	$\begin{pmatrix} 1\\-2\\2 \end{pmatrix} = \lambda \begin{pmatrix} -5\\4\\-1 \end{pmatrix} - \mu \begin{pmatrix} -2\\2\\-1 \end{pmatrix}$	
	$ \left. \begin{array}{c} -5\lambda + 2\mu = 1 \\ 4\lambda - 2\mu = -2 \\ -\lambda + \mu = 2 \end{array} \right\} $	A1
	Solve for either $\lambda = 1$ or $\mu = 3$	M1 A1
	Hence $\mathbf{v}_R = -4\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$	A1
	$ \begin{pmatrix} 3\\2\\1 \end{pmatrix} = \begin{pmatrix} a\\b\\c \end{pmatrix} + 2 \begin{pmatrix} -4\\6\\-2 \end{pmatrix} $	M1 A1ft
	$\Rightarrow a = 11, b = -10, c = 5$	
	t = 0, R is at $11i - 10j + 5k$	A1 (9)
		(14 marks)

(ft = follow through mark)

Question Number	Scheme	Marks
6. (<i>a</i>)	$t = 0 \qquad A \qquad 2 \qquad O \qquad 2 \qquad B$ $\xrightarrow{x} \qquad \qquad$	
	$T_{1} = 4(1 + x) ; T_{2} = 4(1 + \frac{1}{2}\sin 4t - x)$ $T_{2} - T_{1} = 2\ddot{x}$	B1; B1 M1
(b)	$2\ddot{x} = 4(1 + \frac{1}{2}\sin 4t - x) - 4(1 + x)$ $\Rightarrow \ddot{x} + 4x = \sin 4t (\clubsuit)$ CF: $x = A \sin 2t + B \cos 2t$ PI: $x = P \sin 4t$	A1 A1 (5) B1 M1
	$-16P\sin 4t + 4P\sin 4t = \sin 4t$ $\Rightarrow P = -\frac{1}{12}$ $x = A\sin 2t + B\cos 2t - \frac{1}{12}\sin 4t$	M1 A1 M1
	$t = 0, x = 0 \Longrightarrow B = 0$ $\dot{x} = 2A \cos 2t - \frac{1}{3} \cos 4t$ $t = 0, \dot{x} = 0 \Longrightarrow A = \frac{1}{6}$	A1 M1
	$\dot{x} = 0 \implies \frac{1}{3} \cos 2t - \frac{1}{3} \cos 4t = 0$ $\implies \cos 4t = \cos 2t$	A1 ft (8) M1
	$\Rightarrow 4t = 2t + 2\pi \text{ or } 2\pi - 2t$ $\Rightarrow t = \pi \text{ or } \frac{\pi}{3}$	M1 A1
	\Rightarrow First at rest after $t = 0$ when $t = \frac{\pi}{3}$	A1 cso (4) (17 marks)

(ft = follow through mark; (*) denotes answer is given on paper; cso = correct solution only)

EDEXCEL MECHANICS M4

PROVISIONAL MARK SCHEME JANUARY 2003

Question Number	Scheme	Marks
1.	Let boy's velocity be $\uparrow \stackrel{u}{\longrightarrow} 0.75$	M1
	Speed = 1 \Rightarrow 1 ² = u ² + $\frac{9}{16}$, \therefore u ² = $\frac{7}{16}$ or u = $\frac{\sqrt{7}}{4}$ or 0.661	M1 A1
	Time = $\frac{100}{\sqrt{7}/4} = 151.18 = 151s$	A1
	$u = \frac{0.75}{1}$ $\sin \theta = \frac{0.75}{1} \Rightarrow \theta = 48.6$ $\therefore \text{Bearing is } 049^\circ \text{ or } 048.6^\circ$	M1
	∴ Bearing is 049° or 048.6°	A1
		(6) (6 marks)
2.	Let wind be $\wedge W$	M1
	Relative to A: $ \begin{array}{c} $	M1, A1
	Relative to <i>B</i> : $M_y - 14$ $W_y - 14 = W_x$ From SW, $\Rightarrow W_y - 14 = W_x$ $\therefore W_y = 24$	M1, A1
	: Magnitude of $W = \sqrt{10^2 + 24^2} = 26 \text{ km h}^{-1}$	A1
	$\tan \alpha = \frac{10}{24} \Rightarrow \alpha = 22.6$	
	\therefore Bearing 023° or 022.6°	A1
		(7 marks)

EDEXCEL MECHANICS M4

PROVISIONAL MARK SCHEME JANUARY 2003

Question Number	Scheme	Marks
3.	$(\downarrow) mg - mkv^2 = ma$	M1 A1
	$g - kv^2 = v\frac{\mathrm{d}v}{\mathrm{d}x} \qquad \qquad v\frac{\mathrm{d}v}{\mathrm{d}x}$	M1
	$x = \int \frac{v}{g - kv^2} \mathrm{d}v$	M1
	$x = -\frac{1}{2k} \ln \left g - kv^2 \right + c$	M1 A1
	$x = 0, v = 0 \Longrightarrow 0 = -\frac{1}{2k} + c$	M1
	$x = \frac{1}{2k} \ln \left \frac{g}{g - kv^2} \right $	
	$e^{2kx} = \frac{g}{g - kv^2}$	A1
	$kv^2 = g(1 - e^{-2kx})$	M1
	$v = \sqrt{\frac{g}{k} \left(1 - e^{-2kD}\right)} \qquad \text{must use } D$	A1
		(11 marks)

Question Number	Scheme	Marks
4. (<i>a</i>)	$P.E.of rod = mg \times 2a \sin 2\theta$	B1
	$AC = a \cot \theta$	B1
	EPE in String = $\frac{1}{2} \times \frac{3}{4} \times \frac{mg}{a} (a \cot \theta - a)^2$	M1 A1
	Total P.E $V = mg.2a \sin 2\theta + \frac{3}{8} \frac{mg}{a} (a \cot \theta - a)^2$	M1
	$=\frac{mga}{8}\left[16\sin 2\theta+3\cot^2\theta-6\cot\theta+3\right]$	M1
	i.e. $V = \frac{mga}{8} [16\sin 2\theta + 3\cot^2 \theta - 6\cot \theta] + \text{const} (*)$	A1 cso (7)
(b)	$\frac{\mathrm{d}v}{\mathrm{d}\theta} = \frac{mga}{8} \left[32\cos 2\theta - 6\cot \theta \operatorname{cosec}^2 \theta + 6\operatorname{cosec}^2 \theta \right]$	M1 A2, 1, 0
	$\frac{\mathrm{d}v}{\mathrm{d}\theta}\Big _{\theta=0.535} = \frac{mga}{8} \left(-0.5^{0.1}\right)$	M1
	$\left. \frac{\mathrm{d}v}{\mathrm{d}\theta} \right _{\theta=0.545} = \frac{mga}{8} \left(0.2^{99}_{\dots} \right)$	A1
	Change of sign $\therefore \frac{dv}{d\theta} = 0$ in range, so \exists find a position of equilibrium	A1 (6)
	(c) $\frac{\mathrm{d}v}{\mathrm{d}\theta}\Big _{0.535} < 0, \ \frac{\mathrm{d}v}{\mathrm{d}\theta}\Big _{\theta=0.545} > 0$	M1
	So turning point is <i>minimum</i> , ∴ equilibrium is <i>stable</i>	A1, A1 (3)
		(16 marks)

EDEXCEL MECHANICS M4

PROVISIONAL MARK SCHEME JANUARY 2003

Question Number	Scheme	Marl	KS
5. (<i>a</i>)	Auxiliary Equation.: $m^2 + 2m + 2 = 0$, $\Rightarrow m = -1 \pm i$	M1, A1	
	:. Complementary. Function is: $x = e^{-t} (A \cos t + B \sin t)$	M1 ft	
	Let $x = p \cos 2t + q \sin 2t$, $\dot{x} = -2p \sin 2t + 2q \cos 2t$, $\ddot{x} = -4x$	M1	
	Sub. in D.E.		
	$-2p\cos 2t - 2q\sin 2t - 4p\sin 2t + 4q\cos 2t = 12\cos 2t - 6\sin 2t$	M1	
	-2p + 4q = 12, -4p - 2q = -6	A1	
	$-10p = 0 \implies p = 0, q = 3$	M1	
	$\therefore \qquad x = 3\sin 2t + e^{-t} (A\cos t + B\sin t)$	A1	
	$t = 0, x = 0 \implies 0 = A$	B1	
	$\dot{x} = 6 \cos 2t - e^{-t} B \sin t + e^{-t} B \cos t$	M1	
	$t = 0, x = 0 \implies 0 = 6 + B$ $\therefore B = -6$		
	$\therefore \qquad x = 3 \sin 2t - 6 e^{-t} \sin t$	A1	(11)
(b)	$\dot{x} = 6[\cos 2t + e^{-t} \sin t - e^{-t} \cos t]$		
	Sub $t = \frac{\pi}{4}$ $\dot{x} = 6[\cos 2t + e^{-t} - 6 e^{-t} \cos t]$		
	$\dot{x} = 6 \left[0 + e^{-\frac{x}{4}} \times \frac{1}{\sqrt{2}} - e^{-\frac{x}{4}} \times \frac{1}{\sqrt{2}} \right] = 0$	M1	
	\therefore <i>P</i> comes to instantaneous rest when $t = \frac{\pi}{4}$	A1	(2)
(C)	sub $t = \frac{\pi}{4}$ in $x = 3 \sin \frac{\pi}{2} - 6e^{-\frac{\pi}{4}} \frac{1}{\sqrt{2}}, = 1.07$	M1, A1	(2)
(<i>d</i>)	$t \to \infty$ $x \approx 3 \sin 2t$, approximate period is π	M1, A1	(2)
		(17 r	narks)

Question Number	Scheme	Marks
6. (<i>a</i>)	$13 \qquad 5 \qquad P \text{ before:} \rightarrow \frac{13u}{12} \cos \alpha = u, \uparrow \frac{13u}{12} \sin \alpha = \frac{5u}{12}$	B1, B1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	PCLM (\rightarrow) $mu = mv + 2m \frac{3u}{5}, \Rightarrow v = \frac{-u}{5}, \text{ i.e. } \frac{u}{5} // \text{CB}$	M1 A1 (4)
(b)	NLI $\rightarrow eu = v_2 - v_1 \Rightarrow eu = \frac{3u}{5} - \frac{u}{5}$, i.e. $e = \frac{4}{5}$	M1, A1 (2)
(c)	$Q \rightarrow C t_1 = \frac{d_1}{3u/5} = \frac{5d_1}{3u}$	B1
	<i>P</i> travels $\frac{u}{5} \times \frac{5d_1}{3u} = \frac{d_1}{3}$ in direction <i>CB</i>	M1
	:. $P ext{ is } d_1 + \frac{d_1}{3} = \frac{4d_1}{3} ext{ from } w$ (*)	A1 c.s.o (3)
(d)	After hitting w, Q has speed $\frac{3u}{10}$ in direction CB	B1
	Velocity of Q relative to P in direction CB is $\frac{u}{10}$	M1
	Time for Q to travel $\frac{4}{3}d_1$ is: $\frac{4d_1}{3u} \times 10 = \frac{40d_1}{3u}$	A1
	Total time between collisions is: $\frac{40d_1}{3u} + \frac{5d_1}{3u} = \frac{15d_1}{u}$ (*)	A1 c.s.o (4)
(<i>e</i>)	For collision to occur <i>P</i> must travel $\uparrow d_2$ and $\downarrow d_2$ in time $\frac{15d_1}{u}$	
	$d_2 \uparrow t_2 = \frac{d_2}{5u/12} = \frac{12d_2}{5u}$	B1
	$\downarrow d_2 \text{ velocity } \downarrow \text{ is } \frac{5u}{24}, \therefore t_3 = \frac{d_2}{5u/24} = \frac{24d_2}{5u}$	B1, B1
	Total time is $\frac{36d_2}{5u} = \frac{15d_1}{u}$,	M1
	$\therefore 12d_2 = 25d_1$, i.e. $d_1:d_2 = 12:25$	A1 (5)
		(18 marks)

PROVISIONAL MARK SCHEME

Ques Num		Scheme	Marks	5
1.	(<i>a</i>)	$0.158 \uparrow \bigcirc 0.02v^{2} \qquad 0.01a = 0.01g - 0.158 - 0.02v^{2}$ $a = v \frac{dv}{dx}$	M1 M1	
		$v \frac{dv}{dx} = -2v^2 - 6$ (*)	A1	(3)
	(<i>b</i>)	$-\int \frac{v \mathrm{d}v}{2v^2 + 6} = \int \mathrm{d}x$	M1	
		$x = \frac{1}{4} \ln (2v^2 + 6) (+ C)$	A1	
		$x = 0, v = 0 \Longrightarrow C = \frac{1}{4} \ln 206$	A1	
		$v = 0 \Longrightarrow x = \frac{1}{4} \ln \frac{206}{6} \approx 0.884 \text{ m}$	M1 A1	(5)
			(8 ma	rks)
2.	(<i>a</i>)	<i>B</i> vector triangle attempted	M1	
		vector triangle correct	A1	
		Explanation for $v > u$		
		$\frac{d}{d} = \frac{1}{u}$ (e.g. 'hypotenuse > other sides')	A1	(3)
	(<i>b</i>)	\underline{B} \underline{C} vector triangle attempted	M1	
		E_{right} angle correctly placed	A1	
		$\frac{BC}{A} = \frac{AE}{ED}$ Use of similar triangles	M1	
		$=\frac{\sqrt{(u^2-v^2)}}{v}$	M1 A1	(5)
			(8 ma	rks)

((*) indicates final line is given on the paper)

Question Number	Scheme	Marks
3.	$\mathbf{v}_{W} = W\mathbf{v}_{M} + \mathbf{v}_{M} \text{(used)}$	M1
	$WV_M \downarrow 30^\circ u$ (one vector triangle) $WV_M \downarrow 60^\circ u$	M1 A1 A1
	Combining	M1
	P $P\hat{Q}R = 90^{\circ}$	M1
	$QR = 2u \sin 30^\circ = u$ $\Rightarrow \text{ triangle } OQR \text{ is equilateral}$ $\Rightarrow OQ = \mathbf{v}_W = u$	M1 A1
	Q also $\Rightarrow Q\hat{O}R = 60^{\circ}$	
	Hence direction is from N 60° E u R	A1 (9)
		(9 marks)

PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
4. (<i>a</i>)	Extension of string = $7a - 2a \cos \theta - a$	B1
	$=2a(3-\cos\theta)$	
	$PE = 8mga \cos \theta + \frac{4mg}{5} \times \frac{4a^2}{2a} (3 - \cos \theta)^2$	B1, M1 A1
	$=8mga\cos\theta + \frac{8mga}{5}(9-6\cos\theta-\cos^2\theta)$	M1
	$=\frac{8mga}{5}\left(\cos^2\theta - \cos\theta\right) + C (*)$	A1 (6)
(b)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = \frac{8mga}{5} \left(-2\cos\theta\sin\theta + \sin\theta\right)$	M1 A1
	= 0	M 1
	$\Rightarrow \sin \theta = 0 \text{ or } \cos \theta = \frac{1}{2}$	
	$\Rightarrow \theta = 0 \text{ or } \pi, \text{ or } \theta = \frac{\pi}{3}$	A1, A1 (5)
(C)	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = \frac{8mga}{5} \left(\cos \theta + 2\sin^2 \theta - 2\cos^2 \theta\right)$	M1 A1
	$\theta = 0$ $V'' < 0$ $(= -\frac{8mga}{5})$ unstable	
	$\theta = \pi V'' < 0 (= -3 \times \frac{8mga}{5})$ unstable	A1
	$\theta = \frac{\pi}{3}$ $V'' > 0 \ (= 3 \times \frac{8mga}{5})$ stable	A1 (4)
		(15 marks)

((*) indicates final line is given on the paper)

PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
5. (<i>a</i>)	$A \qquad T_2 = T_1 + mg \qquad mga \qquad mga$	M1
	$\frac{mge}{a+e} = \frac{mg}{a}(2a-e) + mg$	M1 A1
	$T_{2} = T_{1} + mg$ $T_{2} = T_{1} + mg$ $\frac{mge}{a} = \frac{mg}{a}(2a - e) + mg$ $e = \frac{3a}{2} \Rightarrow AE = \frac{5a}{2} (*)$ mg	A1 A1 cso (5)
	$ \bigvee_{T_1} Mg $	
(b)	$mg + \frac{mg}{a}\left(\frac{1}{2}a - x\right) - \frac{mg}{a}\left(\frac{3}{2}a + x\right) - 2m\sqrt{\frac{g}{a}}\frac{\mathrm{d}x}{\mathrm{d}t} = m\frac{\mathrm{d}^2x}{\mathrm{d}t^2}$	M1 A3 (-1eeoo)
	$\Rightarrow \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2k\frac{\mathrm{d}x}{\mathrm{d}t} + 2k^2 x = 0 \qquad (*)$	A1 (5)
(C)	AE: $m^2 + 2km + 2k^2 = 0$	M1
	$m = -k \pm ki$	A1
	GS: $x = e^{-kt}(A \cos kt + B \sin kt)$	A1 ft
	$t = 0, \ x = \frac{1}{2}a \implies A = \frac{1}{2}a$	B1
	$\frac{\mathrm{d}x}{\mathrm{d}t} = k\mathrm{e}^{-kt}(A\coskt + B\sinkt) + \mathrm{e}^{-kt}(-kA\sinkt + kB\coskt)$	M1
	$t = 0, \ \frac{\mathrm{d}x}{\mathrm{d}t} = 0 \ \Rightarrow \ -kA + kB = 0 \ \Rightarrow \ B = A = \frac{1}{2}a$	M1
	$x = \frac{1}{2}a e^{-kt}(\cos kt + \sin kt)$	A1 (7)
		(17 marks)

(cso = correct solution only; ft = follow through mark; (*) indicates final line is given on the paper; eeoo = each error or omission)

PROVISIONAL MARK SCHEME

-	stion nber	Scheme	Marks	
6.	(<i>a</i>)	No impulse perpendicular to line of centres \Rightarrow velocity perpendicular to line of centres unchanged = $U \cos \alpha$ (*)	B1	
		(\mathbf{r}) : CLM $U \sin \alpha = v + w$	M1 A1	
		NLI $eU\sin\alpha = w - v$	M1 A1	
		$\Rightarrow v = \frac{1}{2} U \sin \alpha (1 - e)$	M1 A1	(7)
	(<i>b</i>)	Component perpendicular to wall = $v \sin \alpha + U \cos \alpha \cos \alpha$	M1	
		$= \frac{1}{2} U \sin^2 \alpha (1-e) + U \cos^2 \alpha$		
		$= \frac{1}{2} U(\sin^2 \alpha - e \sin^2 \alpha + 2 - 2 \sin^2 \alpha)$	M1	
		$= \frac{1}{2} U [2 - \sin^2 \alpha (1 + e)] (*)$	A1	
		Component parallel to wall = $U \cos \alpha \sin \alpha - v \cos \alpha$	M1	
		$= U \cos \alpha \sin \alpha - \frac{1}{2} U \sin \alpha \cos \alpha (1 - e)$	A1	
		$= \frac{1}{2} U \cos \alpha \sin \alpha (1+e) (*)$	A1	(6)
	(c)	$e=\frac{2}{3}$, tan $\alpha=\frac{3}{4}$		
		Component perpendicular to wall = $\frac{1}{2}U(2 - \frac{9}{25} \times \frac{5}{3}) = \frac{7u}{10}$	B1	
		Component parallel to wall $= \frac{1}{2} U \times \frac{4}{5} \times \frac{3}{12} \times \frac{5}{3} = \frac{2u}{5}$		
		A Distance of A from $X = d \cot \theta = \frac{4d}{3}$	B1	
		$T = d \cot \theta$	M1	
		$S \xrightarrow{d} X \qquad \cot \theta = \frac{2u}{5} \times \frac{7u}{10} = \frac{4}{7}$	A1	
		$\therefore \text{ Total distance } AB = \frac{4d}{3} + \frac{4d}{7}$		
		$\frac{2u}{5} \qquad B \qquad \qquad = \frac{40d}{21}$	A1	(5)
			(18 mar	·ks)

((*) indicates final line is given on the paper)

Question Number	Scheme	Marks
1.	N2L $-2v = 3a$	M1
	$-2v = 3v \frac{\mathrm{d}v}{\mathrm{d}s}$	A1
	$s = -\frac{3}{2}v(+c)$ or $v = -\frac{2}{3}s(+c)$ cancelling v and integrating	M1
	$s = 0, v = 5 \Longrightarrow c = \frac{15}{2}$ or $s = \left[-\frac{3}{2}v\right]_{5}^{2}$	M1
	Distance travelled is 4.5 m	A1 (5 marks)
2.	(a) Before u_y v_y u_x \rightarrow (A) (B) v_x	
	A: \uparrow $u_y = 2.5 \sin \alpha = 2.5 \times \frac{4}{5} = 2 \text{ (ms}^{-1}\text{)}$ either	M1
	$\rightarrow \qquad u_x = 2.5 \cos \alpha = 2.5 \times \frac{3}{5} = 1.5 \text{ (ms}^{-1}\text{)} \qquad \text{both}$	A1
	B: $\downarrow v_y = 1.3 \sin \beta = 1.3 \times \frac{12}{13} = 1.2 \text{ (ms}^{-1}\text{)}$ either	M1
	$\leftarrow v_x = 1.3 \cos \beta = 1.3 \times \frac{5}{13} = 0.5 \text{ (ms}^{-1}\text{)}$ both	A1 (4)
	(b) After $(A \to B \to B)$	
	LM $2x + w = 3 - 0.5$ (= 2.5) NEL $w - x = \frac{1}{2} \times 2$ (=1)	M1 A1 ft M1 A1 ft
	Solving $x = 0.5, y = 1.5$ M1 solving for either	M1 A1
	Speed of <i>A</i> is $\sqrt{2^2 + 0.5^2} = \sqrt{4.25} \approx 2.1 \text{ (m s}^{-1}\text{)}$ M1 either	M1 A1
	Speed of <i>B</i> is $\sqrt{(1.2^2 + 1.5^2)} = \sqrt{3.69} \approx 1.9 \text{ (m s}^{-1})$	A1 (9)
	Note: Not 1 d.p. loses maximum of one mark	(13 marks)

Question Number	Scheme	Marks
3.	(a) $AP = s - AD - DE = s - L - 2L \sin \theta$	M1 A1 (2)
	(b) $V(\theta) = 2 \times 2mg \times L\cos\theta +$ = $+ mg(2L\cos\theta - AP)$	B1 M1
	$= 4mgL\cos\theta + mg(2L\cos\theta + 2L\sin\theta)(+C)$ $= 2mgL(3\cos\theta + \sin\theta) + \text{ constant } (*) \qquad \text{cso}$	M1 A1 (4)
	(c) $V^{(\theta)} = 2mgL(-3\sin\theta + \cos\theta)$ = 0	M1 M1
	$\tan \theta = \frac{1}{3}$ $\theta \approx 18^{\circ}$ awrt $18^{\circ}, 0.32^{\circ}$	A1 A1 (4)
	(d) $V''(\theta) = 2mgL(-3\cos\theta - \sin\theta)$ $\left(V''\left(\arctan\frac{1}{3}\right) = -2\sqrt{10mgL}\right)$	M1 A1
	$V''(\theta) < 0$, for any acute θ Equilibrium is <u>unstable</u> ft any acute θ	M1 A1 ft (4) (14 marks)

Question Number	Scheme	Marks
4.	(a) A $x P B$ $T_1 T_2$	
	HL $T_1 = \frac{2mk^2L(0.5L+x)}{L}$ either	M1
	HL $T_2 = \frac{2mk^2L(0.5L-x)}{L}$ both	A1
	N2L $T_2 - T_1 - 2mk \frac{\mathrm{d}x}{\mathrm{d}t}, = m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$	M1 A1, A1
	$4mk^2x - 2mk\frac{\mathrm{d}x}{\mathrm{d}t} = m\frac{\mathrm{d}^2x}{\mathrm{d}t^2}$	
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2k\frac{\mathrm{d}x}{\mathrm{d}t} + 4k^2x = 0 * \qquad \mathrm{cso}$	A1 (6)
	(b) $m^2 + 2km + 4m^2 = 0$ ae $m = -k \pm k \sqrt{3i}$	M1 M1
	$x = e^{-kt} \left(A \cos \sqrt{3kt} + B \sin \sqrt{3kt} \right) \qquad \text{oe}$	A1
	$t = 0, x = \frac{L}{2} \implies A = \frac{L}{2}$	B1
	$\dot{x} = -k \mathrm{e}^{-kt} \left(A \cos \sqrt{3kt} + B \sin \sqrt{3kt} \right)$	
	$+\sqrt{3k}\mathrm{e}^{-kt}\left(-A\sin\sqrt{3kt}+B\cos\sqrt{3kt}\right)$	M1
	$t = 0, \dot{x} = 0 \implies 0 = -kA + \sqrt{3kB}$	M1
	$B = \frac{1}{\sqrt{3}}A = \frac{L}{2\sqrt{3}}$	A1
	$AP = 1.5L + \frac{L}{2\sqrt{3}}e^{-kt} \left(\sqrt{3}\cos\sqrt{3}kt + \sin\sqrt{3}kt\right) \qquad \text{oe}$	A1 (8)
	Alternatives forms of the answer are given on the next page	(14 marks)

Question Number	Scheme	Marks
4.	(b) Alternative form of the General Solution As before $x = A e^{-kt} \cos(\sqrt{3kt} - \varepsilon)$	M1 M1 A1
	$t = 0, x = \frac{L}{2} \implies \frac{L}{2} = A\cos(-\varepsilon) (= A\cos\varepsilon)$	B1
	$\dot{x} = -kA e^{-kt} \cos\left(\sqrt{3kt} - \varepsilon\right) - \sqrt{3kA} e^{-kt} \sin\left(\sqrt{3kt} - \varepsilon\right)$	M1
	$t = 0, \dot{x} = 0 \implies 0 = -kA\cos\varepsilon - \sqrt{3kA\sin(-\varepsilon)}$	M1
	Leading to $\tan \varepsilon = \frac{1}{\sqrt{3}} \implies \varepsilon = \frac{\pi}{6}$ and $A = \frac{L}{\sqrt{3}}$ both	A1
	$AP = 1.5L + \frac{L}{\sqrt{3}}e^{-kt}\cos\left(\sqrt{3}kt - \frac{\pi}{6}\right)$	A1 (8)
	<i>Note</i> : Another possible trig form is $\sin\left(\sqrt{3kt} + \frac{\pi}{3}\right)$	
5.	(a)Before After \xrightarrow{u} \xrightarrow{C} \xrightarrow{V} \xrightarrow{V} \xrightarrow{V} \xrightarrow{V} \xrightarrow{x}	
	$ \rightarrow \qquad \text{LM} \qquad 600u = 800x \\ \rightarrow \qquad \text{NEL} \qquad x = eu \\ e = 0.75 $	M1 A1 M1 A1 A1 (5)
	(b) Van N2L $-500 = 800a$ $0^2 = x^2 - 2 \times 0.625 \times 45$, $x^2 = 56.25$ ($x = 7.5$) Car N2L $-300 = 600a$ $0^2 = v^2 - 2 \times 0.5 \times 21$, $v^2 = 21$ From (a) NEL $u = \frac{4}{3} \times 7.5 = 10$	M1 M1, A1 M1 M1, A1
	5	M1
	$V^2 = 10^2 + 21, \implies V = 11 \text{ (ms}^{-1}\text{)}$ cao	$ \begin{array}{ c c } M1, A1 & (9) \\ \hline & (14 \text{ marks}) \end{array} $
		(14 marks)

Question Number	Scheme	Marks
6.	0.4 (a) Vector ! or \leftarrow	M1
	$\cos\theta = \frac{0.4}{0.85}$	M1
	$\theta \approx 61.9^{\circ}$ awrt 62°	A1 (3)
	(b) $u = \sqrt{(0.85^2 - 0.4^2)}$ or $u = 0.85 \sin \theta$	M1
	$\frac{\theta}{u} = \frac{60}{u} = \frac{60}{0.75} = 80 (s) $ cao	M1 A1 (3)
	(c) $\mathbf{v}_{N \operatorname{rel} W} = -0.4\mathbf{i} (+0.75\mathbf{j})$ Allow for $\pm 0.4\mathbf{i}$	M1
	$\mathbf{v}_{N} = \mathbf{v}_{N \operatorname{rel} W} + 0.5\mathbf{i} = 0.1\mathbf{i} + (0.75\mathbf{j}) \qquad 0.1\mathbf{i}$	A1
	$t = \frac{40}{0.75} = \frac{160}{3}$	M1
	$\delta = 0.1 \times \frac{160}{3} = \frac{16}{3}$ awrt 5.3	M1 A1 (5)
	(d) As in (c) $\mathbf{v}_N = -0.2\mathbf{i} + 0.75\mathbf{j}$ $\pm 0.2\mathbf{i}$	M1
	$t = \frac{20}{0.75} = \frac{80}{3}$	M1
	$\delta = 0.2 \times \frac{80}{3} = \frac{16}{3}$	M1
	Hence N lands at D cso	A1 (4) (15 marks)
	 Notes: 1. In (c) and (d), the candidate can take components without using vectors. Mark as vector method. 2. After the first line in (d), the result is clear by proportion. Allow as long as some explanation given. 3. cos θ = ⁸/₁₇ = 0.4705, sin θ = ¹⁵/₁₇ = 0.8823 4. Alternatives to (c) and (d), using vector triangles are given on the next page. 	

Question Number	Scheme	Mar	ks
6.	Alternatives to (c) and (d)		
(c)	$v^{2} = 0.5^{2} + 0.85^{2} - 2 \times 0.5 \times 0.85 \times \cos \theta$ $= 0.5725 \ (v = \frac{\sqrt{229}}{20} \approx 82.4^{\circ})$ $\frac{\sin \varphi}{0.85} = \frac{\sin \theta}{v}$ $\sin \varphi = \frac{15}{\sqrt{229}} \ (\approx 0.9912; \ \varphi \approx 82.4^{\circ})$ $\frac{\delta}{40} = \cot \varphi; \delta = 40 \times \frac{2}{5} = \frac{16}{3} \ \text{awrt 5.3}$	M1 M1 A1 M1 A1	(5)
(d)	$w^{2} = 0.2^{2} + 0.85^{2} - 2 \times 0.2 \times 0.85 \times \cos \theta$ = 0.6025 $\left(w = \frac{\sqrt{241}}{20} \approx 0.7762\right)$ $\frac{\sin \psi}{0.85} = \frac{\sin \theta}{w}$ sin $\psi = \frac{15}{\sqrt{241}}$ (\approx 0.9662; $\psi \approx 104.9^{\circ}$ $\psi = 75.1^{\circ}$ gains M1	M1 M1	
	$\frac{\varepsilon}{20} = \cot(180^\circ - \psi) = \frac{4}{15}$ $\varepsilon = \frac{16}{3} = \delta$ Hence <i>N</i> lands at <i>D</i> cso Note: Exact working is needed for final A1 but all previous marks in (c) and (d) may be gained by approximate working.	M1 A1	(4)

Question Number	Scheme	Marks
1. (<i>a</i>)	$P \qquad \qquad$	M1
(<i>b</i>)	$v \Rightarrow v \sin \phi = w \sin \theta *$ $k = v \sin \phi + w \sin \theta$	A1 (2) M1 A1
	$=\frac{v\sqrt{v^2-w^2\sin^2\theta}}{v}+w\cos\theta$	M1
	$=\sqrt{v^2 - w^2 \sin^2 \theta} + w \cos \theta$	A1 (4)
		(6 marks)
2.	$\sin \theta = \frac{a}{2a}$	M1
	$\Rightarrow \theta = 30^{\circ}$	A1
	$v_1 + v_2 = u \cos \theta$	M1 A1
	$-v_1 + v_2 = \operatorname{eu} \cos \theta$	M1 A1
	$\frac{u\sin\theta}{v_1} = \tan\left(\theta + 30^\circ\right) \text{ (or equivalent)}$	M1 A1
	Producing an equation in <i>e</i> only	M1
	$e = \frac{1}{3}$	A1 c.s.o
		(11 marks)

Question Number		Scheme	Marks	
3.	<i>(a)</i>	$B \qquad 6 \text{ km} \qquad A \qquad \text{Vector } \Delta$	M1 A1	
		$d = \frac{\theta}{12} + \frac{12}{13} \cos \theta = \frac{12}{13}$	M1	
		$(\theta = 22.6^{\circ})$		
		Course is 360° – 22.6°		
		= 337° (AWRT)	A1	(4)
	(<i>b</i>)	$v = \sqrt{13^2 - 12^2} = 5$		
		$t = \frac{6\cos\theta}{5} = 1.107$		
		Time is 1.06 p.m.		
	(c)	$d = 6 \sin \theta = 6 \times \frac{5}{13} = 2.31 \text{ km}$ (AWRT 2.3 km)	M1 A1	(2)
			(11 mar	·ks)

~	estion Imber	Scheme	Marks
4.	(<i>a</i>)	$P \underbrace{2a}_{S} OQ = 4a \sin \theta$	B1
		$V = (-) mga \sin 2\theta, + \frac{mg}{2\sqrt{3}2a} (4a \sin \theta - a)^2 + C$	B1; M1 A1
		$= -mga\sin 2\theta + \frac{mga^2}{4a\sqrt{3}}(16\sin^2\theta - 8\sin\theta + 1) + C$	M1
		Q = $-mga\sin 2\theta + \frac{mga}{4\sqrt{3}}(8(1-\cos 2\theta) - 8\sin\theta) + C$	M1
		maa	
		i.e. $V = -\frac{mga}{\sqrt{3}} (2\cos 2\theta + \sqrt{3}\sin 2\theta + 2\sin \theta) + C$ *	A1 c.s.o (7)
	(<i>b</i>)	$V'(\theta) = -\frac{mga}{\sqrt{3}} \left(-4\sin 2\theta + 2\sqrt{3}\cos 2\theta + 2\cos\theta\right)$	M1 A1
		$V'(\theta) = -\frac{mga}{\sqrt{3}} \left(-4\sin 2\theta + 2\sqrt{3}\cos 2\theta + 2\cos\theta\right)$ $V'\left(\frac{\pi}{6}\right) = -\frac{mga}{\sqrt{3}} \left(-2\sqrt{3} + 2\sqrt{3}\frac{1}{2} + 2\frac{\sqrt{3}}{2}\right) = 0$	M1 A1 (4)
	(C)	$V''(\theta) = \frac{mga}{\sqrt{3}} (+8\cos 2\theta + 4\sqrt{3}\sin 2\theta + 2\sin \theta)$	M1 A1
		Hence, $V''\left(\frac{\pi}{6}\right) = \frac{11mga}{\sqrt{3}} > 0$: stable	M1 A1 c.s.o (4)
			(15 marks)

Question Number	Scheme	Marks
5. (<i>a</i>)	$\mathbb{R}(\downarrow), mg - 2k \dot{x} m - T = m \ddot{x}$	
	$g - 2k\dot{x} - \frac{2ak^2x}{a} = \ddot{x}$	M1
	$\Rightarrow \ddot{x} + 2k\dot{x} + 2k^{2}x = g \qquad *$	A1 c.s.o (4)
(b)	$t = 0, x = a$: $a = D + \frac{g}{2k^2} \Rightarrow D = a - \frac{g}{2k^2}$	M1 A1
	$\dot{x} = -ke^{-kt}(C\sin kt + D\cos kt) + -ke^{-kt}(C\cos kt - D\sin kt)$	M1 A1
	$t = 0, \ \dot{x} = 0: 0 = -kD + kC \Longrightarrow C = D$	
	$\Rightarrow C = a - \frac{g}{2k^2}$	A1 (5)
(<i>c</i>)	$\dot{x} = 0 \implies C(\sin kt + \cos kt) + C(\cos kt - \sin kt)$	M1
	$\Rightarrow \sin kt = 0$	A1 ft
	$\Rightarrow kt = \pi$	
	$\Rightarrow t = \frac{\pi}{k}$	A1 (3)
(<i>d</i>)	When $t = \frac{\pi}{k}, x = -De^{-\pi} + \frac{g}{2k^2}$	M1
	$\frac{g}{2k^2} - e - \pi (a - \frac{g}{2k^2})$	A1 ft
	$\Rightarrow x \mathrm{e}^{\pi} = \frac{g}{2k^2} \left(\mathrm{e}^{\pi} + 1 \right) - a$	
	> 0 (given)	M1
	$\Rightarrow g(e^{\pi} + 1 > 2k^2a \qquad \qquad *$	A1 c.s.o (4)
		(16 marks)

-	estion mber	Scheme	Marks
6.	(<i>a</i>)	$F = \frac{kmg}{v}$ $R(\uparrow), F - mg = ma$ $\frac{kmg}{v} - mg = mv\frac{dv}{dx}$	B1 M1 M1
		$g(k-v) = v^2 \frac{\mathrm{d}v}{\mathrm{d}x} *$	A1 (4)
	(b)	$g dx = \frac{v^2}{k - v} dv$ $\int g dx = \int -v - k + \frac{k^2}{k - v} dv$	M1 M1 A1
		$gx = -\frac{v^2}{2} - kv - k^2 \ln(k - v) + (c)$ x = 0, v = 0	M1 A1
		$0 = 0 - 0 - k^2 \ln k + c$ $c = k^2 \ln k$	M1
	(c)	$gx = -\frac{v^2}{2} - kv - k^2 \ln\left(\frac{k}{k - v}\right) $ Work done by engine = Energy gain	A1 (7)
		$kmgt = \frac{1}{2}mv^{2} + mgx$ $kmgt = mk^{2} ln\left(\frac{k}{k-v}\right) - mkv$	M1 A1 M1
		$\Rightarrow t = \frac{k}{g} \ln\left(\frac{k}{k-v}\right) - \frac{v}{g}$	A1 (5)
			(16 marks)

Edexcel Mechanics M4 – January 2005

1. (a) Impulse on A is in the direction of the line of centres.

Impulse on $A = \Delta(mv) = m(-2\mathbf{i} + 5\mathbf{j}) - m(\mathbf{i} + 2\mathbf{j}) = m(-3\mathbf{i} + 3\mathbf{j})$. Therefore direction of line of centres is $(-\mathbf{i} + \mathbf{j})$. A unit vector in this direction is $\frac{(-\mathbf{i} + \mathbf{j})}{\sqrt{2}}$.

(b) Let velocity of *b* after collision be $v_1 \mathbf{i} + v_2 \mathbf{j}$

Momentum conserved: $m(\mathbf{i}+2\mathbf{j})+5m(-\mathbf{i}+3\mathbf{j})=m(-2\mathbf{i}+5\mathbf{j})+5m(v_1\mathbf{i}+v_2\mathbf{j})$

Cancel *m* and equate coefficients: **i**: $-4 = -2 + 5v_1$ **j**: $17 = 5 + 5v_2$ **i**: $v_1 = -\frac{2}{5}$ **j**: $17 = 5 + 5v_2$ **v**₂ = $\frac{12}{5}$ Velocity of *B* after collision $= -\frac{2}{5}\mathbf{i} + \frac{12}{5}\mathbf{j}$.

2. (a) Velocity of wind relative to man = $\mathbf{V}_{WM} = \mathbf{V}_W - \mathbf{V}_M$. $\therefore v(3\mathbf{i} - 4\mathbf{j}) = \mathbf{V}_W - u\mathbf{j}$ Similarly $w\mathbf{i} = \mathbf{V}_W - \frac{1}{5}u(-3\mathbf{i} + 4\mathbf{j})$.

Equate the two expressions for \mathbf{V}_M that these produce: $v(3\mathbf{i} - 4\mathbf{j}) + u\mathbf{j} = w\mathbf{i} + \frac{1}{5}u(-3\mathbf{i} + 4\mathbf{j})$

Equate coefficients:
i:
$$-3v = w - \frac{3}{5}u$$

j: $-4v + u = \frac{4}{5}u$ $\therefore v = \frac{1}{20}u$

(b)
$$\mathbf{V}_{W} = \frac{1}{20}u(3\mathbf{i} - 4\mathbf{j}) + u\mathbf{j} = \frac{1}{20}u(3\mathbf{i} + 16\mathbf{j})$$

3. Treat *B* when
$$t = 0$$
 as the origin.
 $\mathbf{r}_{A} = 12t\mathbf{i} + 4\mathbf{j}$. $\mathbf{r}_{A} = 16t\left(\frac{\sqrt{3}}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}\right)$
 $\mathbf{B}\mathbf{A} = \mathbf{r}_{A} - \mathbf{r}_{B} = \mathbf{i}\left(12t - 8t\sqrt{3}\right) + \mathbf{j}(4 - 8t)$
Length of $\mathbf{A}\mathbf{B} = \sqrt{\left(\left(12t - 8t\sqrt{3}\right)^{2} + (4 - 8t)^{2}\right)} = \sqrt{\left(\left(144 - 192\sqrt{3} + 192\right)t^{2} + 16 - 64t + 64t^{2}\right)}$

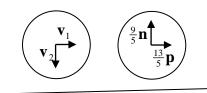
Minimum when derivative of terms inside square root = 0:

 $2t(144 - 192\sqrt{3} + 192) - 64 + 128t = 0, t \approx 0.47$. (Minimum because this is a +ve quadratic.) Substitute back into length of **AB**: $|\mathbf{AB}| \approx 0.90$ km.

Answers

4. Apply F = ma: $m\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{RU}{v} - R$

Separate the variables: $\int_{\frac{u}{4}}^{\frac{u}{2}} \frac{mvdv}{R(U-v)} = \int_{0}^{T} dt .$ $\frac{m}{R} \int_{\frac{u}{4}}^{\frac{u}{2}} \left(-1 + \frac{U}{(U-v)} \right) dv = [t]_{0}^{T} = T$ $\frac{m}{R} \left[-v - U \ln |U - v|]_{\frac{u}{4}}^{\frac{u}{2}} = T$ $T = \frac{m}{R} \left(\left(-\frac{1}{2}U - U \ln \left(\frac{1}{2}U \right) \right) - \left(-\frac{1}{4}U - U \ln \left(\frac{3}{4}U \right) \right) \right)$ $T = \frac{mU}{R} \left(-\frac{1}{4} + \ln \left(\frac{3}{2} \right) \right)$


5. (Note: error in question: $\mathbf{p} = +\frac{4}{5}\mathbf{i} + \frac{3}{5}\mathbf{j}$.)

(a)
$$\frac{9}{5}\mathbf{n} + \frac{13}{5}\mathbf{p} = \frac{9}{5}\left(-\frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{j}\right) + \frac{13}{5}\left(\frac{4}{5}\mathbf{i} + \frac{3}{5}\mathbf{j}\right) = \frac{25}{25}\mathbf{i} + \frac{75}{25}\mathbf{j} = \mathbf{i} + 3\mathbf{j}$$

(b)

(c)

After

No impulse parallel to the wall so velocity parallel to wall unchanged: $\mathbf{v}_1 = \frac{13}{5}\mathbf{p}$ Newton's law of Restitution perpendicular to the wall: $e\mathbf{v}_2 = -\frac{9}{5}\mathbf{n}$ Put in values: $\frac{9}{16}\mathbf{v}_2 = -\frac{9}{5}\left(-\frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{j}\right)$, $\mathbf{v}_2 = -\frac{16}{5}\left(-\frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{j}\right) = \frac{39}{25}\mathbf{i} - \frac{64}{25}\mathbf{j}$ $\mathbf{v}_1 + \mathbf{v}_2 = \frac{13}{5}\left(\frac{4}{5}\mathbf{i} + \frac{3}{5}\mathbf{j}\right) - \frac{16}{5}\left(-\frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{j}\right) = 4\mathbf{i} - \mathbf{i}$ Change in KE $= \frac{1}{2} \times \frac{1}{2} \times \left(4^2 + 1^2\right) - \frac{1}{2} \times \frac{1}{2} \times \left(3^2 + 1^2\right) = 1.75$ J 6. (a) Take *O* as zero p.e.

Mechanical potential energy
$$(mgh) = -mga\cos 2\theta$$

Elastic potential energy $\left(\frac{\lambda x^2}{2l}\right) = \frac{1}{2} \times \frac{4mg}{\frac{5}{4}a} (2a\cos 2\theta - \frac{5}{4}a)^2$
Total p.e. $= -mga(2\cos^2\theta - 1) + \frac{8mg}{5a} \left(\frac{8a\cos\theta - 5a}{4}\right)^2$
 $= -2mga\cos^2\theta + mga + \frac{mga}{10} (8\cos\theta - 5)^2$
 $= \frac{mga}{10} (8\cos\theta - 5)^2 - 2mga\cos^2\theta + c$ (change of constant with referral of p.e. to any other zero position.)

(b) Equilibrium when p.e. is max/min so
$$\frac{dE}{d\theta} = 0$$

 $\frac{dE}{d\theta} = \frac{mga}{10} \times 16 \times (8\cos\theta - 5)(-\sin\theta) + 4mga\cos\theta\sin\theta = 0$
 $mga\sin\theta(-\frac{64}{5}\cos\theta + 8 + 4\cos\theta) = 0$
 $mga\sin\theta(8 - \frac{44}{5}\cos\theta) = 0$
 $\sin\theta = 0, \ \theta = 0$
or
 $\cos\theta = \frac{10}{11}, \ \theta = 24.6^{\circ}$
(c) $\frac{d^2E}{d\theta^2} = mga\sin\theta(\frac{44}{5}\sin\theta) + mga\cos\theta(8 - \frac{44}{5}\cos\theta)$

When $\theta = 0$, $\frac{d^2 E}{d\theta^2} = mga(8 - \frac{44}{5}) = -\frac{4}{5}mga$ which is <0 so max E so unstable.

When $\theta = 24.6^{\circ}$, $\frac{d^2 E}{d\theta^2} = mga\left(\frac{44}{5}\left(1 - \left(\frac{10}{11}\right)^2\right) + \frac{10}{11}\left(8 - \frac{44}{5} \times \frac{10}{11}\right) = \frac{84}{55}mga$ which is >0 so min *E* so stable. 7. (a)

$$a \xrightarrow{\frac{1}{2}ft^2} t = 0$$

$$4 \xrightarrow{x} T \qquad a + y \qquad \text{time } t$$

At time *t*:

- the particle has moved *x*,
- the string is length (a + y),
- the end of the string has moved $\frac{1}{2}ft^2$. $\therefore a + \frac{1}{2}ft^2 = x + a + y$, $\therefore x + y = \frac{1}{2}ft^2$.

(b)
$$F = ma$$
 to particle: $T = m\ddot{x}$
 $\frac{man^2}{a}y = m\ddot{x}$
 $n^2(\frac{1}{2}ft^2 - x) = \ddot{x}$
 $\ddot{x} + n^2x = \frac{1}{2}n^2ft^2$

(c)
$$x = 0, t = 0 : 0 = A - \frac{f}{n^2}, A = \frac{f}{n^2}$$

Differentiating the solution: $\dot{x} = -nA\sin nt + nB\cos nt + ft$ (or get \ddot{x} from original d.e.) $\dot{x} = 0, t = 0 \therefore 0 = nB, B = 0$

(d) Differentiating again: $\ddot{x} = -n^2 A \cos nt - n^2 B \sin nt + f = -f \cos nt + f$

 $T = m\ddot{x} = mf(1 - \cos nt).$

This takes max value of 2mf (when $\cos nt = -1$).

, ,

publication version 04/07/05. June 2005 6680 Mechanics M4 Mark Scheme

Post studentisetie

শব্<u>র</u>

Question Number	Scheme	Marks
1. (a)	usix I usix Get along plane = 1955x usix I usix after impact = 10x36 = 6	BI
	$V = e \times 10 \cos x$ $(= \frac{1}{2} \times 10 \times \frac{4}{5} = 4)$	MIAI
	Speed = $\sqrt{4^2 + b^2} = 7.21 \text{ ms}^{-1} (3SF)$	M(A) (5)
(ق)	$T = \frac{1}{2}(48) = \frac{6N_5}{2}$	<i>η</i> 1 <i>π</i> 1 (2) <i>(</i> 7)
2.	Fix P Veter (1)	MIAJ
	$Q = \frac{10}{20}$	M(A)
	20^{-10} $= 060^{-10}$	AI S
3.	$V_{3} = u \sin \alpha$ $V_{3} = u \sin \alpha$ $V_{3} = u \sin \alpha$ $V_{1} + V_{2} = u \cos \alpha$ $V_{3} = \tan \beta$ $V_{3} = \tan \beta$ $V_{3} = \tan \beta$ $V_{3} = \tan \beta$ $V_{1} = \tan \beta$ $V_{2} = \tan \beta$ $V_{3} = \tan \beta$	BI MIAI MIAI MI MI MI MI
	$\Rightarrow \tan \beta(i-e) = 2 \tan x$	A1

6680 Mechanics M4 June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

Question Number	Scheme	Marks
4 (~)	For constat speed, $F - kV^2 = 0$ =) $V = \sqrt{F_k} + \frac{1}{k}$	H1 A1 (2)
(b)	$F - kv^2 = Ma$ => $F - kv^2 = Mv dv$ dx	MIA) H1
	$\int dy = M \int \frac{v}{F + k v^2} dv$	h l
	$x = -\frac{H}{2k} \ln (F - k u^2) (f c)$	AI
	$x=0, v=0 \Rightarrow C = \frac{M}{2E} hE$	ni Al
	$x = \frac{M}{2k} \sum_{k=1}^{2} \left[hF - h(F - kv^{4}) \right]$	
	$X = \frac{M}{2K} \ln \left(\frac{F}{F - k \cdot \frac{F}{4K}} \right)$	m1
	$= \underbrace{\frac{M}{2le}}_{2le} \underbrace{\frac{4}{3}}_{3} \underbrace{\frac{4}{3}}_{2le}$	$ \begin{array}{c} \mathbf{h} - \begin{pmatrix} & \begin{pmatrix} q \\ & \end{pmatrix} \\ & \begin{pmatrix} 1 \\ \end{pmatrix} \end{array} $
5.(•)	$P \rightarrow GPE = -mglcos 20$	81
	$3L \neq EPE = \frac{mg}{6} \frac{(6lan O - L)^2}{2L}$	MI MI
	$B = \frac{m_s}{12i} \left(\frac{36i^2 \cos^2 0 - 12i^2 \cos 0 + i^2}{12i} \right)$ = m_s l ($3\cos^2 0 - \cos 0$) + C	
	$V = -m_{gL}(2\cos^{2}\theta - i) + m_{gL}(3\cos^{2}\theta - i\theta) + c$ = m_{gL}(cos^{2}\theta - con\theta) + c^{1} *	- MI MI икофоо20= AI (6)
(6)	$\frac{dV}{dp} = m_{gl} \left(-2conQsinQ + sinQ \right) = 0$	₩1 A1; N1
	$\sin (-2\cos 0 + 1) = 0$ $\sin (-2\cos 0 + 1) = 0$ $\sin 0 = 0$ $\cos 0 = \frac{1}{2}$	ਸ
	$Q = 0 \alpha 0 = \pm \overline{\eta}_3$	Ai Al
		(6)
		(7)

6680 Mechanics M4 June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

.

٠

• •

a.

70 km B (a). Minum speed = 365:30° for interception = 18 M1 A | $cord = \frac{18}{30} (= \frac{3}{10})$ MAI A => +0 = 4/3 MI Explanation H_{2} (5) SM1 42 AQ = 3600300 + 30500 (1853 + 24) $\overline{11m} = \frac{70}{(18\sqrt{3}+24)} = \frac{1.27 \text{ ks.}}{1.27 \text{ ks.}}$ $\overline{11m} = \frac{70}{(18\sqrt{3}+24)} = \frac{1.27 \text{ ks.}}{1.27 \text{ ks.}}$ $\overline{11m} = \frac{1.27 \text{ ks.}}{1.27 \text{ ks.}}$ M A) ſŝ (b) For particle, $k(\rightarrow)$, $T = \frac{5maw^2x}{a}$ (12) 7. (^) HI A1 (2) ->HI AI 11 BI; BI $u = \tilde{y} + \tilde{x} ; 0 = \tilde{y} + \tilde{x}$ $u = g + x ; \quad 0 = g + x$ $5 m \omega^{2} x - 2m \omega (u - \dot{x}) = m(-\ddot{x})$ $\Rightarrow \quad \frac{\ddot{x} + 2\omega \ddot{x} + 5\omega^{2}x = 2\omega u}{\dot{x} + 5\omega^{2}x = 2\omega u} \quad *$ $AE: u^{2} + 2\omega u + 5\omega^{2} = 0 \quad \Rightarrow (u + \omega)^{2} = -4\omega^{2}$ $\Rightarrow \qquad u = -\omega \pm 2i\omega$ $AE: u^{2} + 2\omega u = 2u$ $\Rightarrow \qquad u = -\omega \pm 2i\omega$ $F: x = e^{-\omega t} (A \log 2\omega t + B \sin 2\omega t)$ $PI: x = \frac{2\omega u}{5\omega^{2}} = \frac{2u}{5U}$ $FS: x = e^{-\omega t} (A \log 2\omega t + B \sin 2\omega t) + \frac{2u}{5\omega}$ $H=0, t=0: \quad 0 = A + \frac{2u}{5\omega} \quad \Rightarrow A = -\frac{2u}{5\omega}$ MI (7)A 1 BI (0) 11 31 BI $\bar{x} = -\omega e^{-\omega t} (A \omega z \omega t + B \sin 2 \omega t) + e^{-\omega t} (-2 \omega A \sin 2 \omega t + 2 \omega B \cos 2 \omega t)$ MI AIV n (t=0, y=0=) x=u $U = -\omega A + 2\omega B \implies B = \frac{3\omega}{10\omega}$ $x = e^{-\omega t} \left(\frac{3u}{10u} \sin 2\omega t - \frac{2u}{5w} \cos 2\omega t \right) + \frac{2u}{5w}$ AL (8)

MJJ. 4.705

6680 Mechanics M4 June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

Question Number	Scheme	Marks
1.	(a) $\frac{1}{2}\frac{dv}{dt} = \frac{1}{2}g - 2v$	M1
	$\Rightarrow 5\frac{dv}{dt} = 49 - 20v \qquad (*)$	A1 (2)
	(b) $\int \frac{5dv}{49-20v} = \int dt$ (separate variables)	M1
	$\frac{-5}{20}\ln(49 - 20v) = t \ (+c)$	A1
	$t = 0, v = 0 \Rightarrow c = -\frac{1}{4} \ln 49$ (attempt to get c)	↓ M1
	$t = \frac{1}{4} \ln \left(\frac{49}{49 - 20\nu} \right)$	
	$t = 1: 1 = \frac{1}{4} \ln(\frac{49}{49 - 20\nu})$ (correct use of logs/exp)	♦ M1
	$\rightarrow \underline{v \approx 2.41 m s^{-1} \text{ or } 2.4 m s^{-1}}$	A1 (5)
		Total 7 marks
2.	(a) Energy: $\frac{1}{2}m\left(\frac{37ga}{5}-v^2\right) = mg.2a(1-\cos\theta)$	M1 A1
	Using $\theta = \frac{\pi}{3}$ & solve: $\rightarrow v = \sqrt{\frac{27ga}{5}}$ (*) 2a	M1 A1 (4)
	(b) Impact: $u_1 = ev \sin 30$ u_2	M1 A1
	KE loss = $\frac{1}{2}m(v^2 \sin^2 30 - e^2 v^2 \sin^2 30)$ $\left[+\frac{1}{2}mv^2 \cos^2 30 - \frac{1}{2}mu_2^2\right] = \frac{3mga}{5}$ $v/1$	▼ M1 A1
	[Using $u_2 = v \cos 30$ if necessary &] /30° ^V	
	reducing to equation in (m, g, a) e alone	A1
	$\frac{3mga}{5} = \frac{1}{2}m \cdot \frac{27ga}{5} \cdot \frac{1}{4}(1-e^2)$	
	Solve for $e: \rightarrow e = \frac{1}{3}$	M1 A1 (7)
	3	Total 11 marks

Question Number	Scheme	Marks
3.	(a) (i) $\mathbf{v}_{Q} = {}_{Q} \mathbf{v}_{P} + \mathbf{v}_{P}$ $ \mathbf{v}_{Q} ^{2} = (10\cos 30)^{2} + (16 - 10\sin 30)^{2}$ = 75 + 121 $\Rightarrow \mathbf{v}_{Q} = 14ms^{-1}$ (ii) $\tan \theta = \frac{16 - \sin 30}{10\cos 30}$ (o.e.) $\theta \approx 51.8^{\circ}, \Rightarrow \text{ bearing } 308^{\circ} \text{ (nearest degree)}$ (b) At nearest approach: $PN = 20\sin 30$ $= \underline{10 \ km}$	M1 A1 A1 M1 A1, A1 (6) M1 A1 A1 (3)
	 (c) Time = 20 cos 30/10 ≈ 1.732 hrs ⇒ Time ≈ 4.44 pm (AWRT) Alternatives (a) Use of cosine rule in velocity vector triangle. (b) & (c) Use of scalar product of relative velocity and relative position or differentiating magnitude of relative position vector squared to find the minimum 	M1 A1 A1 (3) Total 12 marks
	distance and time at which it occurs.	

Question Number	Scheme	Marks
4.	(a) $R(\downarrow) m\frac{d^2x}{dt^2} = mg - T - 2m\omega\frac{dx}{dt}$ (4 terms) $m\frac{d^2x}{dt^2} = mg - \frac{2m\omega^2a}{a}(e+x) - 2m\omega\frac{dx}{dt}$ $\rightarrow \frac{d^2x}{dx^2} + 2\omega\frac{dx}{dt} + 2\omega^2x = 0$ (*) (b) $x = e^{-\omega t} (A\cos\omega t + b\sin\omega t)$	$M1 A1$ \downarrow $M1$ \downarrow $M1 A1$ (5)
	$t = 0, x = 0 \Rightarrow \underline{A} = 0$ $\frac{dx}{dt} = -\omega e^{-\omega t} . B \sin \omega t + e^{-\omega t} . B \omega \cos \omega t \qquad \text{(use of product rule)}$ $t - 0, \frac{dx}{dt} = U : U = B\omega \Rightarrow \underline{B} = \frac{U}{\omega}$	B1 M1 M1 A1 (4)
	(c) $\frac{dx}{dt} = -Ue^{-\omega t} \sin \omega t + Ue^{-\omega t} \cos \omega t = 0$ $\Rightarrow \tan \omega t = 1 (\text{solve for } \tan \omega t)$ $\Rightarrow \underline{t} = \frac{\pi}{4\omega}$	M1 M1 A1 (3) Total 12 marks

Question Number	Scheme		Marks
5.	(a) $CLM(\leftrightarrow): mu\cos 60 = mv + kmw$ $NLI: \frac{1}{2}u\cos 60 = w - v$ Solve for $w: (1+k)w = \frac{1}{2}u(1+\frac{1}{2})$ $\Rightarrow w = \frac{3u}{4(k+1)}$ (*) (b) Solve for $v \to v = \frac{u(2-k)}{4(k+1)}$ $\tan \theta = 2\sqrt{3} = \frac{u\sin 60}{v}$ $= \frac{u\sqrt{3}}{2} \cdot \frac{4(k+1)}{u(2-k)}$ Solve $k: \to k = \frac{1}{2}$ (c) $k = \frac{1}{2} \Rightarrow v = \frac{u}{4}, w = \frac{u}{2}$ KE loss $= \frac{1}{2}mu^2 - (\frac{1}{2}m \cdot \frac{u^2}{16} + \frac{1}{2}m \cdot \frac{3u^2}{4} + \frac{1}{2} \cdot \frac{1}{2}m \cdot \frac{u^2}{4})$ $= \frac{1}{2}mu^2(1-\frac{1}{16}-\frac{3}{4}-\frac{1}{8})$ $= \frac{1}{32}mu^2$	$\frac{u\cos 60}{\sqrt{u}\sin 60} \sqrt[4]{0}$ $\frac{\sqrt{u}\sin 60}{\sqrt{u}\sin 60} \sqrt[4]{0}$	M1 A1 M1 A1 M1 A1 (6) M1 A1 M1 A1 (6) B1 M1 A1 (6) B1 M1 A1 (4) Total 16 marks

(b) $\frac{dV}{d\theta} = \sqrt{2}mga(-3\sin\theta + 2\sin 2\theta)$ $\frac{dV}{d\theta} = 0 \Rightarrow 2\sin 2\theta - 3\sin \theta = 0$ $\Rightarrow \sin \theta (4\cos\theta - 3) = 0$ $\Rightarrow \theta = 0, \text{ or } \theta = \pm \arccos \frac{3}{4} (= \pm 0.723)$ (c) $\frac{d^2V}{d\theta^2} = \sqrt{2}mga(-3\cos\theta + 4\cos 2\theta)$ M1 A1 (6)	Question Number	Scheme	Marks
$= \sqrt{2}mga\left(-\frac{9}{4}+\frac{1}{2}\right)$ $= \sqrt{2}msable}$ A1 (4)	Number	(a) PE of R = $-\sqrt{2}mga\cos 2\theta$ (+c) (1) PE of LH mass = $-\frac{3}{2}mg(2a - 2a\sin(45 + \theta))$ (+c) (2) PE of RH mass = $-\frac{3}{2}mg(2a - 2a\sin(45 - \theta))$ (+c) (3) $V = (1) + (2) + (3)$ (in terms of θ etc.) $= -\sqrt{2}mga\cos 2\theta - \frac{3}{2}mg[4a - a\sqrt{2}(\cos\theta + \sin\theta + \cos\theta - \sin\theta)]$ $= -\sqrt{2}mga\cos 2\theta - \frac{3}{2}mga(-2\sqrt{2}\cos\theta + 4)$ $= \sqrt{2}mga(3\cos\theta - \cos 2\theta) + \text{constant}$ (*) (b) $\frac{dV}{d\theta} = \sqrt{2}mga(-3\sin\theta + 2\sin 2\theta)$ $\frac{dV}{d\theta} = 0 \Rightarrow 2\sin 2\theta - 3\sin \theta = 0$ $\Rightarrow \sin\theta(4\cos\theta - 3) = 0$ $\Rightarrow \theta = 0, \text{ or } \theta = \pm \arccos\frac{3}{4}(=\pm 0.723)$ (c) $\frac{d^2V}{d\theta^2} = \sqrt{2}mga(-3\cos\theta + 4\cos 2\theta)$ $\cos\theta = \frac{3}{4}: \frac{d^2V}{d\theta^2} = \sqrt{2}mga\left(-3.\frac{3}{4} + 4\left(2.\frac{9}{16} - 1\right)\right)$ $= \sqrt{2}mga\left(-\frac{9}{4} + \frac{1}{2}\right)$	B1 M1 A1 A1 M1 M1 M1 M1 M1 M1 M1 A1, A1 (6) M1 A1

June 2006 6680 Mechanics M4 Mark Scheme

Question Number	Scheme	Marks
۱-	12 Q 120°	
	$(-Y_{p})$ 150 15 $(-Y_{p})$ (Y_{a})	ні
	$\frac{\sin 4}{12} = \frac{\sin 150^{\circ}}{15}$	HI AI
	$\Rightarrow sid = \frac{6}{15}$ $\Rightarrow \propto = 23.6^{\circ}$	AI O
	Course is 0916 (.4°)	AI S
2.	$\frac{1}{11} \frac{1}{11} \frac$	MIAI
	Plan view => $J^2 = U^2 (GS^2 + e^2 Siz)$ => $KE = \frac{1}{2} M U^2 (GS^2 + e^2 Siz)$	41 A1 6
	$= \frac{kE}{2} = \frac{-kK}{2} \frac{kE}{1000} \frac{kE}{10000} \frac{kE}{100000} \frac{kE}{100000} \frac{kE}{100000} \frac{kE}{1000000} \frac{kE}{1000000} \frac{kE}{100000000} \frac{kE}{1000000000} \frac{kE}{1000000000000000000000000000000000000$	

(b) $x_{e} = \frac{191}{16}$ $(-X_{p}) = \frac{14}{16} = \frac{14}{16} = \frac{14}{16}$ $(-X_{p}) = \frac{14}{16} = \frac{14}{16} = \frac{14}{16}$ $(-X_{p}) = \frac{5060}{14}$ $= \frac{5060}{14} = \frac{5060}{14}$ $= 38 \cdot 213 \cdot \cdot \cdot$ $(-4kn = P = (i) DN = 4000 \sin 8 \cdot 213$ $(i) DN = 4000 \sin 8 \cdot 213$ $(i) DN = \frac{4000}{7} = \frac{571m}{41}$ $(i) T = \frac{4000}{14} \cos 8 \cdot 213^{2} \sin 1$ $(i) T = \frac{4000}{14} \cos 8 \cdot 213^{2} \sin 1$ $(i) T = \frac{4000}{14} \cos 8 \cdot 213^{2} \sin 1$ $(i) T = \frac{4000}{14} \cos 8 \cdot 213^{2} \sin 1$ $(i) T = \frac{4000}{14} \cos 8 \cdot 213^{2} \sin 1$ $(i) T = \frac{4000}{14} \cos 8 \cdot 213^{2} \sin 1$ $(i) T = \frac{14}{14} \sin 1$	Question Number	Scheme	Marks
(b) V_c V_{cb} $\frac{ V = i4 \text{ mc}^{-1} \text{ m}}{ C }$ Ai (C_{cb}) (V_c) (C_{cb}) $\frac{ V = i4 \text{ mc}^{-1} \text{ m}}{ C }$ Ai (C_{cb}) $\frac{ V }{ C } = \frac{14 \text{ mc}^{-1}}{ C }$ Ai Ai (C_{cb}) $\frac{ V }{ C } = \frac{14 \text{ mc}^{-1}}{ C }$ Ai Ai Ai Ai Ai Ai Ai Ai	3-67)	$\frac{1}{2} = 10^{-1} + 16^{-2} = 2 \times 10 \times 16 \times 16^{-10}$	ML AJ
$\frac{\sin x}{10} = \frac{\sin 60}{14}$ $\Rightarrow = 38 \cdot 213.$ $(i) DN = 4000 \sin 8 \cdot 213$ $H = 4000 \cos 8 \cdot 213$ $(i) t = 4000 \cos 8 \cdot 213$ $Saci$ $H = 4000 \cos 8 \cdot 213$ $Saci$ $H = 41 G$ $H = 41 G$ $H = 41 G$		$Y_{e} = \frac{60^{\circ}}{16} = 14 \text{ ms}^{-1} \text{ *}$	A1 (3
$\Rightarrow \alpha = 38.213.$ (i) $DN = 4000 \sin 8.213$ (i) $DN = 4000 \sin 8.213$ (i) $T = \frac{4000 \cos 8.213}{14}$ (ii) $T = \frac{4000 \cos 8.213}{14}$ (iii) $T = \frac{14}{14}$ (iv)	(6)	or is acute (opposite shortest side!)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5	1
8.213 N $Y = 0.11 \text{ M} (-4)$ MIA1 (ii) $t = 4000 \cos 8.243^{\circ} \text{ series}$ 14 282.78 MIA1 Time is 2.05 pm (near set minute) AI (7)		$C = \frac{4kn}{4} P$ (i) $DN = 4000.5in 8.23$	11
$\frac{14}{\text{Time is } 2.05 \text{pm} (\text{nearact minute})} \text{AI G}$		8.213° N $\searrow $ $\stackrel{\sim}{\underline{\vee}} $ $\underbrace{571}_{CP} $ $(\underbrace{4000}_{T})$	A]
I 282-78 ven. Time is 2.05 pm (newast minute) Al G		(ii) $t = \frac{4000 \cos 8.213}{14}$ Sec.	M AI
- one is _ o pr (newaet windu)		1	
		Time is 2.05 pm (newast minute)	AI G
			(10

Question	Scheme	Marks
4.(0)	$P = \frac{R}{2L} P = of string = \frac{kms}{2L} (2L \cos \theta - L)^{T}$	BI MIAJ
	Totel PE of system, $V = -mglcos0 + kmgl(2con0-1)^2 + c$ = $-mglcos0 + kmgl(4cos^20 - Acos0+1) + c$	H1 M1 A1
	$= mgl(-cor\theta + 2kcos^2\theta - 2kcos\theta) + c'$ $= mgl[2kcos^2\theta - (2k+i)cose] + c' $	AI (7)
(6)	$\frac{dV}{d\theta} = mgL(-4kcos\thetasid + (2k+1)sid)$ At equil, mgLsid (-4kcosd + (2k+1)) = 0	Mi Aj Mi
	$\Rightarrow sin \theta = 0 \qquad or cos \theta = \frac{2k+1}{4k}$ $\Rightarrow \theta = 0 \qquad (\theta > 0) \qquad \frac{2k+1}{4k} < 1$ $= \frac{2k+1}{4k} < 1$ $= \frac{2k+1}{4k} < \frac{1}{4k}$	мј
	i kk to	AI (5)
		(12)
6		

Question number	Scheme	Marks
	$P = \int_{1}^{R} PEofred = -mgl(mQ)$ $EPE of string = kmg(2lusQ-l)^{T}$ $f = -mgl(corQ + kmgl(2corQ-l)^{T} + c)$ $= -mgl(corQ + kmgl(4corQ-l)corQ+l) + c$ $= mgl((-corQ + 2kcorQ-l)corQ) + c'$ $= mgl((-corQ + 2kcorQ-l)corQ) + c'$ $= mgl((-4kcorQ-l)corQ-l+c') + c'$ $= mgl((-4kcorQ-l)corQ-l+c') + c'$ $= mgl((-4kcorQ-l+l)corQ-l+c') + c'$ $= mgl((-4kcorQ-l+l)corQ-l+c') + c'$ $= mgl((-4kcorQ-l+l+l)corQ-l+c') + c'$ $= mgl((-4kcorQ-l+l+l)corQ-l+c') + c'$ $= mgl((-4kcorQ-l+l+l)corQ-l+c') + c'$ $= mgl((-4kcorQ-l+l+l)corQ-l+c') + c'$ $= mgl((-4kcorQ-l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+$	ВІ МІАІ МІАІ МІАІ ПІ (7) МІАІ
	$\Rightarrow 0=0 (0>0) \frac{2k+1}{4k} < 1$ $\frac{2k+1}{4k} \frac{2k}{2k}$ $\frac{1}{2} \\ \frac{1}{2k} \\ \frac{1}{$	M) AI (5) (12)

Question	Scheme	Marks
5.(^)	K M P han mold	BI MI
	$(-): \frac{P}{r} - kr = \frac{m dv}{dt}$ $\Rightarrow \frac{P = mr dr}{dt} + kr^{2} $	AL (
6)	$T = 2u$ $\int dt = \int \frac{nv dv}{P - k v^2} (u = \frac{1}{3} \sqrt{p})$	ni A
	$ = T = -m \left[\ln (P - k \sigma^2) \right]_{n}^{2n} $	A2
	= 14 { In(P- 等户) - h(P- 等户)	ni A
	= からいなしい等く	
	$= \frac{2k}{2k} \ln \left(\frac{8P}{7} \times \frac{9}{5P} \right)$ $= \frac{M}{2k} \ln \left(\frac{9}{5} \times \frac{9}{5P} \right)$	H.
	212 5	AI (
		(
	-	

Phestion	Scheine	Marka
(c). J	$\frac{1}{1} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} $	ni ai
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MIAI
		MIA(
	$\Rightarrow k_{1} = k_{2}$	MIAL
	$= \sum_{n=1}^{\infty} I = m \left(\frac{m}{6} + \frac{m}{\sqrt{2}} \right)$ $= \frac{m u \sqrt{2}}{2}$	AI (9)
(5)	Ve -V = in (Separation speed)	н(
	time to well = $\frac{d}{1/\sqrt{2}} = \frac{d\sqrt{2}}{n}$	MIAI
	Separation = $\frac{d\sqrt{2}}{\alpha} \times \frac{u}{\sqrt{2}} = \frac{d}{\alpha}$	MIAI
		(5)
		(La
999-0		

·. ·

Question number	Scheme	Marks
	$\vec{x} = \vec{x} + \vec{x}$ $F = \frac{1}{2}R$	ni
7.(a)	R=mgcox	BI
	T = 4 mg x L	ЭІ
	(2): -F-mgshix -T= mie	MIAI
	-1.4mg - 3mg - 4mgx = mit	
	$\Rightarrow \frac{d^2x}{dt^2} + 4\omega^2x = -g $	A 1
	$(u = \overline{\beta}_{L})$	(6)
(6)	$m^2 + 4\omega^2 = 0 \Rightarrow m = \pm 2\omega i$	
	C.F. il x = Asizwt+ Boszwt	BI
-	$P.T. ii = \frac{-3}{4\omega^2} = -44$	DI
	GS. is z= Asizut+Baszut - 24	BI
	t=0, x=0: B=44 $jt = 2\omega A \cos 2\omega t - 2\omega B \sin 2\omega t$	hiAl
	t=0, i=1, (= = 2, EA = A= 44	ы
	$\Rightarrow x = \frac{1}{4} \left(\frac{3i 2vt + \cos 2wt - 1}{1} \right)$	AI (7)
ଡ଼	i=0 => \$46Acos 2ut - \$46BSin 2ut = 0	41
	$\Rightarrow fan 2ut = \frac{A}{B} = 1$ $\Rightarrow 2ut = \pi T_{4} (frast ratue)$	A1
	$\Rightarrow x = \frac{1}{4} \left(\frac{5}{2} + \frac{5}{2} - i \right)$	11
	$=\frac{L}{4}\left(\sqrt{2}-1\right)$	AI (4)
		(F)

Mark Scheme (Final) Summer 2007

GCE

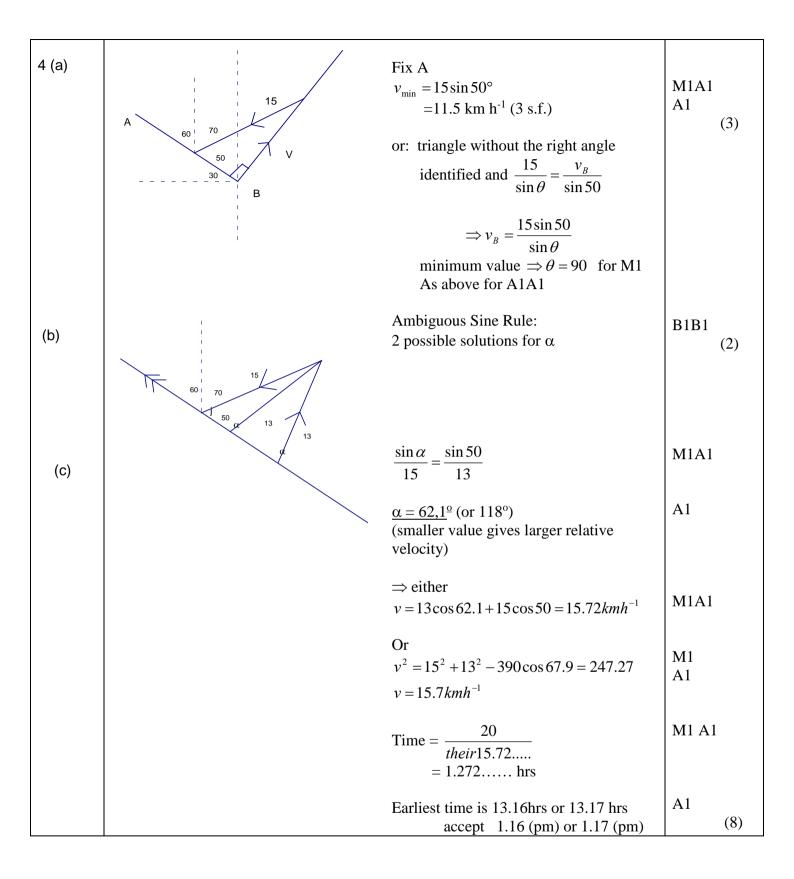
GCE Mathematics (6680/01)

June 2007 6680 Mechanics M4 Mark Scheme

General:

For M marks, correct number of terms, dimensionally correct, all terms that need resolving are resolved. Omission of g from a resolution is an accuracy error, not a method error.

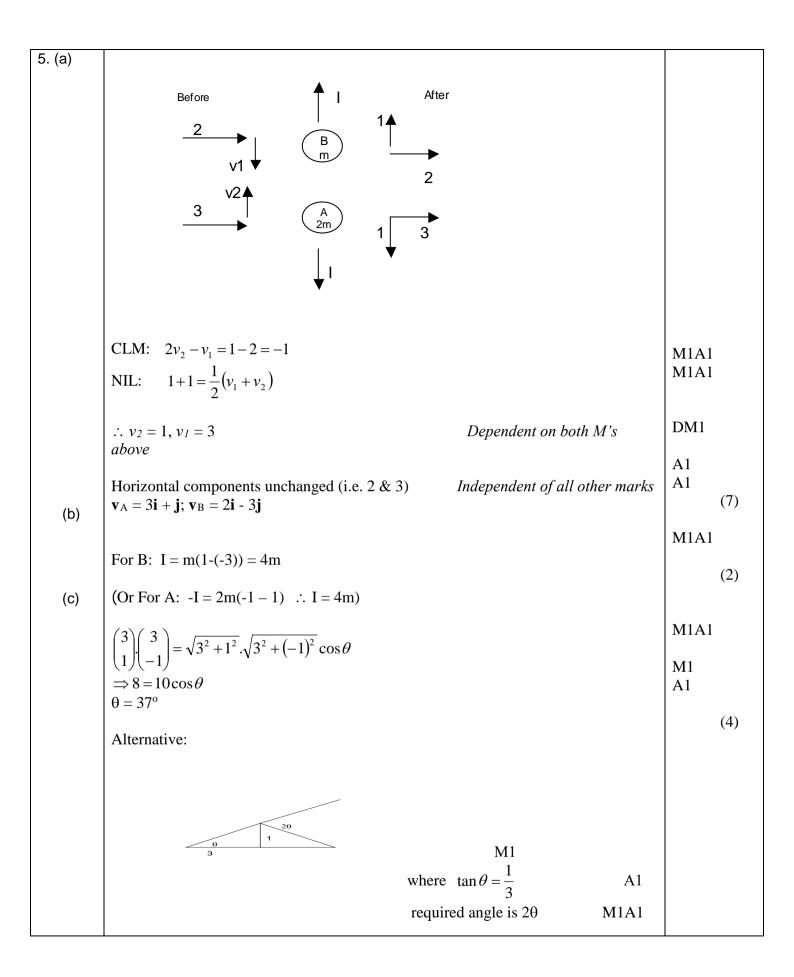
Omission of mass from a resolution is a method error.


Omission of a length from a moments equation is a method error.

Where there is only one method mark for a question or part of a question, this is for a *complete* method. Omission of units is not (usually) counted as an error.

Question Number	Scheme	Marks
1(a)	$u \cos 60^{\circ} = v \cos 30^{\circ}$ $u \qquad u = v\sqrt{3}$	M1A1 A1
	$KE lost = \frac{1}{2}m(u^2 - v^2)$	M1
	Fraction of KE lost = $1 - \left(\frac{v}{u}\right)^2$	DM1
	$= 1 - \frac{1}{3} = \frac{2}{3}$ or at least 3sf ending in 7	A1 (6)
	or $\frac{3}{4}(1-e^2)$	
(b)	$e = \frac{v \sin 30^{\circ}}{u \sin 60^{\circ}}$	M1A1
	$=\frac{v}{u}\cdot\frac{1}{\sqrt{3}}$	DM1
	$=\frac{1}{3}$	A1 (4)
a)	M1 Resolve parallel to the wall	The first
	<i>Alt: reasonable attempt at equation connecting two variables</i> A1 Correct as above or equivalent	three marks can be
	equation correct	awarded in
	A1 u in terms of v or $v.v.$ - not necessarily simplified.	(b) if not
	or ration of the two variables correct M1 expression for KE lost	seen in (a)
	DM1 expression in one variable for fraction of KE lost – could be u/v as above A1 cao	
b)	M1 Use NIL perpendicular to the wall and form equation in e	The first two marks can
	A1 Correct unsimplified expression as above or $eu \sin 60^\circ = v \sin 30^\circ$ or equivalent DM1 Substitute values for trig functions or use relationship from (a) and rearrange to $e = \dots$	marks can be awarded in (a)
	A1 cao accept decimals to at least 3sf	

	edex	kcel	
2(a)	\rightarrow v		
	$F = \frac{Ru}{v}$	B1	
	$\mathbf{R}(\rightarrow), \ \frac{Ru}{v} - R = M \frac{dv}{dt}$	M1	
	$R(u-v) = Mv\frac{dv}{dt}*$	A1 (3)	
(b)	$\int_{0}^{T} dt = \frac{M}{R} \int_{\frac{1}{4}U}^{\frac{1}{3}U} \frac{v dv}{u - v}$	M1A1	
	$\Rightarrow T = \frac{M}{R} \int_{\frac{1}{4}U}^{\frac{1}{3}U} - 1 + \frac{u}{u - v} dv$	DM1	
	$= \frac{M}{R} \left[-v - u \ln(u - v) \right]_{\frac{1}{4}U}^{\frac{1}{3}U}$	A1	
	$=\frac{M}{R}\left[-\frac{u}{3}-u\ln\left(\frac{2u}{3}\right)+\frac{u}{4}+u\ln\left(\frac{3u}{4}\right)\right] \qquad \left(C=-\frac{Mu}{R}\left(\ln\frac{3u}{4}+\frac{1}{4}\right)\right)$	M1	
	$=\frac{Mu}{R}\left(-\frac{1}{12}+\ln\frac{9}{8}\right)$	M1	
	Hence $k = \ln \frac{9}{8} - \frac{1}{12}$	A1 (7)	
a)	 B1 Correct expression involving the driving force. M1 Use of F = ma to form a differential equation. Condone sign errors. a must be expressed as a derivative, but could be any valid form. A1 Rearrange to <u>given form</u>. 		
b)	 M1 Separate the variables A1 Separation correct (limits not necessarily seen at this stage) DM1 Attempt a complete integration process A1 Integration correct M1 Correct use of both limits – substitute and subtract. Condone wrong order. M1 Simplify to find k from an expression involving a logarithm A1 Answer as given, or exact equivalent. Need to see k = lnA + B 		


Question Number	Scheme	Marks
3. (a)	$V = -mga\cos\theta - mg(2a\cos\theta + a\sin\theta)$	M1A1A1
	$=-mga(3\cos\theta + \sin\theta) (+const) *$	A1 (4)
(b)	$\frac{dV}{d\theta} = -mga(-3\sin\theta + \cos\theta)$	M1A1
	$B = 0 \implies \tan \theta = \frac{1}{3}$	M1
	c a $\Rightarrow \theta = 0.32(1)^c \text{ or } 18.4^o \text{ accept awrt}$	A1 (4)
(c)	$\frac{d^2 V}{d\theta^2} = -mga(-3\cos\theta - \sin\theta)$	M1A1
	$= mga(3\cos\theta + \sin\theta)$	
	Hence, when $\theta = 0.32^{\circ}$, $\frac{d^2 V}{d\theta^2} > 0$	M1
	i.e. stable	A1 (4)
a)	 M1 Expression for the potential energy of the two rods. Condone trig errors. Condone sign errors. BC term in two parts A1 correct expression for AB A1 correct expression for BC A1 Answer <u>as given</u>. 	
b)	 M1 Attempt to differentiate V. Condone errors in signs and in constants. A1 Derivative correct M1 Set derivative = 0 and rearrange to a single trig function in θ A1 Solve for θ or M1A1 find the position of the center of mass M1A1 form and solve trig equation for θ 	
c)	M1 Differentiate to obtain the second derivative A1 Derivative correct M1 Determine the sign of the second derivative A1 Correct conclusion. cso Or: M1 Find the value of $\frac{dV}{d\theta}$ on both sides of the minimum point A1 signs correct	These 4 marks are dependent on the use of derivatives
	A1 signs correctM1 Use the results to determine the nature of the turning pointA1 Correct conclusion, cso.	

a)	 M1 Velocity of B relative to A is in the direction of the line joining AB. Minimum V requires a right angled triangle. Convincing attempt to find the correct side. A1 15 x sin(their 50⁰) A1 Q specifies 3sf, so 11.5 only 	
b)	B1B1 Convincing argument B1B0 Argument with some merit	
c)	M1 Use of Sine Rule A1 Correct expression A1 (2 possible values,) pick the correct value. M1 Use trig. to form an equation in v A1 correct equation M1 $time = \frac{dis \tan ce}{speed}$ A1ft correct expression with their v (not necessarily evaluated) A1 correct time in hours & minutes	
	Or: M1 Use of cosine rule A1 $13^2 = 15^2 + v^2 - 2 \times 15 \times v \times \cos 50$ A1 (Award after the next two marks) 15.72 or awrt 15.72 M1 Attempt to solve the equation for v A1 $\frac{30\cos 50 \pm \sqrt{(30\cos 50)^2 - 4 \times 56}}{2}$ (15.72 or 3.562) Finish as above	

Т

Т

a)	M1 Conservation of momentum along the line of centres. Condone sign errors A1 equation correct	
	M1 Impact law along the line of centres.	
	<i>e</i> must be used correctly, but condone sign errors.	
	A1 equation correct. The signs need to be consistent between the two equations	
	M1 Solve the simultaneous equations for their v_1 and v_2 .	
	A1 i components correct – independent mark	
	A1 $\mathbf{v}_{A} \& \mathbf{v}_{B}$ correct	
b)	M1 Impulse = change in momentum for one sphere. Condone order of subtraction.	
	A1 Magnitude correct.	
c)	M1 Any complete method to find the trig ratio of a relevant angle.	
	A1 $\cos\theta = \frac{4}{5}, \ \tan\frac{\theta}{2} = \frac{1}{3}, \ \dots$	
	$5^{-1}, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}$	
	Or M1 find angle of approach to the line of centres and angle after collision.	
	A1 values correct. (both 71.56)	
	M1 solve for θ	
	A1 37^{0} (Q specifies nearest degree)	
	Special case: candidates who act as if the line of centres is in the direction of i:	
	CLM $u+2v = 8$	
	NIL $v-u = 2$	
	u=4/3, v=10/3	
	4/3i + j ; 10/3i – j	
	Impulse $2m - 4/3m = 2/3m$	
	$\frac{10+1}{10} = \cos \theta$ $\theta = 1.70^{\circ}$	
	$\frac{10+1}{\sqrt{10}\sqrt{\frac{109}{9}}} = \cos\theta \qquad \theta = 1.70^{0}$	
	$\sqrt{10}\sqrt{9}$	
	Work is equivalent, so treat as a MR:	
	M1A0M1A0M1A1A1 M1A1 M1A1M1A1	

6680/01 Mechanics M4 - Final. June 2007 Advanced Subsidiary/Advanced Level in GCE Mathematics

a)	 M1 Hooke's law to find extension at equilibrium A1 cao B1 Q specifies reference to a diagram. Correct reasoning leading to given answer. 	
b)	M1 Use of F=ma. Weight, tension and acceleration. Condone sign errors. M1 Substitute for tension in terms of x M1 Use given result to substitute for x in terms of y A1 Correct unsimplified equation A1 Rearrange to <u>given form</u> cso.	
c)	M1 Correct form for CF A1 GS for y correct B1 Deduce coefficient of $\cos \theta = 0$ M1 Differentiate their y and substitue t=0, $\dot{y} = 0$ A1 y in terms of t. Any exact equivalent.	
d)	B1 \dot{y} correct M1 set $\dot{y} = 0$ M1 solve for general solution for t : $7t = 2k\pi \pm 2t$ or: $\sin\frac{9t}{2} \times \sin\frac{5t}{2} = 0 \Rightarrow \sin\frac{9t}{2} = 0 \text{ or } \sin\frac{5t}{2} = 0$ A1 Select smallest value	

GCE Edexcel GCE Mathematics Mechanics 4 M4 (6680)

June 2008

advancing learning, changing lives

Mark Scheme - Final

Mathematics

Edexcel GCE

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

June 2008 6680 Mechanics M4 Mark Scheme

Question Number	Scheme	Marks
1.	$\mathcal{Q}\mathbf{V}_{P} = \mathbf{V}_{Q} - \mathbf{V}_{P} = (3\mathbf{i} + 7\mathbf{j}) - (5\mathbf{i} - 4\mathbf{j})$ $= (-2\mathbf{i} + 11\mathbf{j})$	M1 A1
	$\tan\theta = \frac{11}{2} \Longrightarrow \theta = 79.69^0$	M1 A1
	Bearing is 350 ⁰	A1 5
2.	$2m(2\mathbf{i} - 2\mathbf{j}) + m(-3\mathbf{i} - \mathbf{j}) = 2m(\mathbf{i} - 3\mathbf{j}) + m\mathbf{v}$ $(\mathbf{i} - 5\mathbf{j}) = (2\mathbf{i} - 6\mathbf{j}) + \mathbf{v}$	M1 A1
	$(-\mathbf{i} + \mathbf{j}) = \mathbf{v}$	A1
	$ \mathbf{v} = \sqrt{(-1)^2 + 1^2} = \sqrt{2} \text{ m s}^{-1}$ cwo	DM1 A1 5
3.	$mg - mkv = m\frac{\mathrm{d}v}{\mathrm{d}t}$	M1* A1 A1
	$\int \mathrm{d}t = \int \frac{\mathrm{d}v}{g - kv}$	DM1*
	$t = -\frac{1}{k}\ln(g - kv) + c$	A1cao
	$t = 0, v = u \Longrightarrow c = \frac{1}{k} \ln(g - ku)$	M1†
	$T = \frac{1}{k}\ln(g - ku) - \frac{1}{k}\ln(g - 2ku)$	
	$=\frac{1}{k}\ln\left(\frac{g-ku}{g-2ku}\right)$	DM1†
	$=\frac{1}{k} \ln\left(\frac{1}{g-2ku}\right)$	A1 8

Question Number	Scheme	Marks
4.	$u\cos 2\theta = v\cos \theta$ $\frac{3}{8}u\sin 2\theta = v\sin \theta$	M1 A1 M1 A1
	$3\tan 2\theta = 8\tan \theta$	M1
	$\frac{6\tan\theta}{1-\tan^2\theta} = 8\tan\theta$	M1
	$\tan^2 \theta = \frac{1}{4} (\tan \theta \neq 0)$	
	$\tan\theta = \frac{1}{2}$	M1 A1 8
5.(a)	$-T - \frac{1}{2}mg - 2mv\sqrt{\frac{g}{l}} = m\ddot{x}$	M1 A3,2,1,0
	$\frac{-mgx}{l} - \frac{1}{2}mg - 2m\dot{x}\sqrt{\frac{g}{l}} = m\ddot{x}$	M1
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\omega \frac{\mathrm{d}x}{\mathrm{d}t} + \omega^2 x = -0.5g (\mathrm{AG})$	A1 (6)
(b)		
	$u^{2} + 2\omega u + \omega^{2} = 0 \Longrightarrow u = \omega$ (twice) CF is $x = e^{-\omega t} (At + B)$	D1
	PI is $x = -\frac{1}{2}l (-\frac{g}{2\omega^2})$	B1
	GS is $x = e^{-\omega t} (At + B) - \frac{1}{2}l$	M1
	$t = 0, x = 0 \Longrightarrow B = \frac{1}{2}l \left(\frac{g}{2\omega^2}\right)$	M1
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\omega e^{-\omega t} \left(At + B\right) + A e^{-\omega t}$	M1
	$t = 0, \frac{\mathrm{d}x}{\mathrm{d}t} = \sqrt{gl} = \omega l \Longrightarrow A = \frac{3}{2}\omega l (= \frac{3\sqrt{gl}}{2})(=\sqrt{gl} + \frac{0.5g}{\omega})$	M1
	so $x = e^{-\omega t} \left(\frac{3}{2}\omega lt + \frac{1}{2}l\right) - \frac{1}{2}l = \frac{1}{2}le^{-\omega t} \left(3\omega t + 1\right) - \frac{1}{2}l$	A1 (6)
(c)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 0 \Longrightarrow -\omega \mathrm{e}^{-\omega t} (At + B) + A \mathrm{e}^{-\omega t} = 0$	M1
	$\Rightarrow t = \frac{2}{3\omega}$	M1 A1 (3)
		15

6.(a)	v vector triangle	M1	
	$v^{2} + \left(\frac{x}{10}\right)^{2} = 5^{2}$ $\Rightarrow 100v^{2} = 2500 - x^{2}$	M1 A1 ((3)
(b)	$200v \frac{dv}{dx} = -2x$ $200 \frac{d^2x}{dt^2} + 2x = 0$ $\frac{d^2x}{dt^2} + \frac{x}{100} = 0 *$	M1 A1 D M1 A1 ((4)
(c)	$\frac{dt^2}{dt^2} + \frac{1}{100} = 0 \qquad *$ Aux equn: $m^2 + \frac{1}{100} = 0$ $\Rightarrow m = \pm \frac{i}{10}$	M1 A1	
	$x = A \sin \frac{t}{10} + B \cos \frac{t}{10}$ $t = 0, x = 0 \Longrightarrow B = 0$ $\frac{dx}{dt} = \frac{A}{10} \cos \frac{t}{10}$	A1 B1 M1	
	$t = 0, x = 0 \Rightarrow v = \frac{dx}{dt} = 5$ $\Rightarrow 5 = \frac{A}{10} \Rightarrow A = 50$ $\Rightarrow x = 50 \sin \frac{t}{10}$	M1 A1	
	$x = 30; 30 = 50 \sin \frac{t}{10}$ $\Rightarrow t = 10 \sin^{-1}(\frac{3}{5}) = 6.44 \text{ s}$	M1A1	(9)
		1	.6

7.(a)	PE of rod = $-kMgasin2\theta$ $BP = 2x2asin\theta = 4asin\theta$ PE of mass = $-Mg(6a - 4asin\theta)$ $V = -Mg(6a - 4asin\theta) - kMgasin2\theta$ $= Mga(4sin\theta - ksin2\theta) + constant$ *	B1 M1 A1 M1 A1	(5)
(b)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = Mga(4\cos\theta - 2k\cos2\theta)$ so, $4x\frac{3}{4} - 2k(2(\frac{3}{4})^2 - 1) = 0$ $\Rightarrow k = 12$	M1 A M1 N A1	
(c)	$4\cos\theta - 24(2\cos^2\theta - 1) = 0$ $12\cos^2\theta - \cos\theta - 6 = 0$ $(4\cos\theta - 3)(3\cos\theta + 2) = 0$ $\cos\theta = -\frac{2}{3}$	M1 D M1 A1	(3)
(d)	$\frac{d^2 V}{d\theta^2} = (Mga)(-4\sin\theta + 4k\sin 2\theta)$ when $\cos\theta = \frac{3}{4}, \frac{d^2 V}{d\theta^2} = (Mga) \times 44.97 \Rightarrow \text{stable}$ when $\cos\theta = \frac{-2}{3}, \frac{d^2 V}{d\theta^2} = (Mga) \times -50.68 \Rightarrow \text{unstable}$	M1 A1 M1 A1 A1	(5) 18

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6680/01)

June 2009 6680 Mechanics M4 Mark Scheme

Question Number	Scheme	Marks
Q1	CLM along plane: $v \cos 30^{\circ} = u \cos 45^{\circ}$ $v = u \sqrt{\frac{2}{3}}$ Fraction of KE Lost $= \frac{\frac{1}{2}mu^2 - \frac{1}{2}mv^2}{\frac{1}{2}mu^2} = \frac{\frac{1}{2}mu^2 - \frac{1}{2}m\frac{2}{3}u^2}{\frac{1}{2}mu^2} = \frac{1}{3}$	M1 A1 A1 M1 M1 A1 [6]
Q2	$-mg - mkv^{2} = ma$ $-(g + kv^{2}) = v \frac{dv}{dx}$ $\pm \int_{0}^{x} dx = \int_{\sqrt{\frac{g}{k}}}^{\frac{1}{2}\sqrt{\frac{g}{k}}} \frac{-vdv}{(g + kv^{2})}$ $X = \frac{1}{2k} \left[\ln(g + kv^{2}) \right]_{\frac{1}{2}\sqrt{\frac{g}{k}}}^{\sqrt{\frac{g}{k}}}$ $= \frac{1}{2k} \left(\ln 2g - \ln \frac{5g}{4} \right)$ $= \frac{1}{2k} \ln \frac{8}{5}$	M1 A1 M1 DM1 A1 (both previous) M1 A1 M1 A1
	$-2k^{m}5$	[9]

Question Number	Scheme	Marks
Q3 (a)	$N = \frac{12}{20}$ Q $Cos \alpha = \frac{12}{20}$ Bearing is $180^{\circ} + \alpha = 233^{\circ}$ (nearest degree)	M1 M1 A1 A1
(b) (c)	$PN = 2000\cos(135^{\circ} - \alpha) = 200\sqrt{2} \text{ m or decimal equivalent}$ Time to closest approach = $\frac{QN}{\sqrt{20^2 - 12^2}}$ = $\frac{2000\sin(135^{\circ} - \alpha)}{16}$ Distance moved by Q = their $t \ge 12$ = $1050\sqrt{2}$ m or decimal equivalent	A1 (4) M1A1ft A1 (3) B1 M1 A1 DM1 A1 (5) [12]

Ques Num		Scheme	Marks
Q4	(a)	$V = -mg2a\sin 2\theta - \frac{7}{20}mg(L - 4a\sin\theta)$ $= \frac{1}{5}mga(7\sin\theta - 10\sin 2\theta) - \frac{7}{20}mgL$	M1 B1 A1
	(b)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = \frac{1}{5}mga(7\cos\theta - 20\cos2\theta)$ $\frac{1}{5}mga(7\cos\theta - 20\cos2\theta) = 0$	A1 (4) M1 A1 DM1
		$\frac{1}{5} mga(7\cos\theta - 20\cos 2\theta) = 0$ $7\cos\theta - 20(2\cos^2\theta - 1) = 0$ $40\cos^2\theta - 7\cos\theta - 20 = 0$ $(5\cos\theta - 4)(8\cos\theta + 5) = 0$	DM1 A1
		$(5\cos\theta - 4)(8\cos\theta + 5) = 0$ $\cos\theta = \frac{4}{5} \text{ or } (\cos\theta = -\frac{5}{8} \Longrightarrow 2\theta > 180^{\circ})$	DM1 A1 DM1 (8)
	(c)	$\frac{d^2 V}{d\theta^2} = \frac{1}{5} mga(-7\sin\theta + 40\sin 2\theta)$ $= \frac{1}{5} mga(-7\sin\theta + 80\sin\theta\cos\theta)$ When $\cos\theta = \frac{4}{5}$,	M1 A1
		$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = \frac{1}{5} mga(\frac{-21}{5} + 80\mathrm{x}\frac{3}{5}\mathrm{x}\frac{4}{5}) = \frac{171}{25} mga$ > 0 therefore stable	M1 A1 cso (4)
			[16]

Ques Num	stion nber	Scheme	Mark	s
Q5	(a)	CLM: $2(i+2j) + -2i = 2j + v$ $v = 2j m s^{-1}$	M1 A1 A1	(3)
	(b)	$\mathbf{I} = 2(\mathbf{j} - (\mathbf{i} + 2\mathbf{j}))$	M1 A1	(3)
		= (-2i - 2j) Ns	A1	
		Since I acts along l.o.c.c., l.o.c.c is parallel to $\mathbf{i} + \mathbf{j}$	B1	
				(4)
	(c)	Before A: $(i + 2j) \cdot \frac{1}{\sqrt{2}} (i + j) = \frac{3}{\sqrt{2}}$		
		B: $-2\mathbf{j} \cdot \frac{1}{\sqrt{2}} (\mathbf{i} + \mathbf{j}) = \frac{-2}{\sqrt{2}}$		
		After <i>A</i> : $\mathbf{j} \cdot \frac{1}{\sqrt{2}} (\mathbf{i} + \mathbf{j}) = \frac{1}{\sqrt{2}}$	M1 A3	
		B: $2\mathbf{j} \cdot \frac{1}{\sqrt{2}} (\mathbf{i} + \mathbf{j}) = \frac{2}{\sqrt{2}}$		
		NIL:		
		$e = \frac{\frac{2}{\sqrt{2}} - \frac{1}{\sqrt{2}}}{\frac{3}{\sqrt{2}} - \frac{-2}{\sqrt{2}}} = \frac{1}{5}$	DM1 A1	
				(6) [13]

edexcel

Question Number	Scheme	Marks
Q6 (a)	$(\rightarrow), T = m\ddot{y}$ Hooke's Law:	M1
	$T = \frac{2mn^2ax}{2a} = mn^2x$	B1
	$ \begin{array}{c} x + y = \frac{1}{2} ft^{2} \\ \dot{x} + \dot{y} = ft \\ \ddot{x} + \ddot{y} = f \end{array} $	B2
	so, (\rightarrow) , $mn^2x = m\ddot{y} = m(f - \ddot{x})$	DM1
	$\ddot{x} + n^2 x = f^{**}$	A1
(b)	C.F. : $x = A \cos nt + B \sin nt$	(6) B1
	$P.I. : x = \frac{f}{n^2}$	B1
	Gen solution: $x = A\cos nt + B\sin nt + \frac{f}{n^2}$	M1
	$\dot{x} = -An\sin nt + Bn\cos nt$ follow their PI	M1 A1ft
	$t = 0, x = 0 \Rightarrow A = -\frac{f}{n^2}$ $t = 0, \dot{x} = 0 \Rightarrow B = 0$	M1 A1
	$x = \frac{f}{n^2} (1 - \cos nt)$	A1
(c)	$\dot{x} = 0 \Longrightarrow \qquad nt = \pi$	(8) M1
	$x_{\max} = \frac{f}{n^2}(1-1) = \frac{2f}{n^2}$	M1 A1
(d)		(3)
(d)	$\dot{y} = ft - \dot{x}$	M1
	$=f\frac{\pi}{n}-0=\frac{f\pi}{n}$	A1
	·· ··	(2) [19]

Mark Scheme (Results) Summer 2010

GCE Mechanics M4 (6680/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. Through a network of UK and overseas offices, Edexcel's centres receive the

support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA024478 All the material in this publication is copyright © Edexcel Ltd 2010 Mechanic guidance:

- For M marks, correct number of terms, dimensionally correct, all terms that need resolving are resolved.
- Omission of *g* from a resolution is an accuracy error, not a method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Where there is only one method mark for a question or part of a question, this is for a *complete* method.
- Omission of units is not (usually) counted as an error.
- Use of 9.81 for g is a rubric error. Deduct the final A1 from the first part of any question affected.
- More than 3 sf in an answer using an approximation for g is an accuracy error. Deduct the final A1 from the first part of any question affected.
- A dimensionally incorrect equation is a method error unless a correct equation was quoted and the error arises from a slip in substitution of values.
- For a misread which does not alter the character of a question or materially simplify it, all marks in that part of the question affected become ft. Deduct the first 2 A or B marks gained as a result and give the rest.

Summer 2010 Mechanics M4 6680 Mark Scheme

Question Number	Scheme	Marks
Q1	$v(3\mathbf{i} - 4\mathbf{j}) = \mathbf{v}_W - u\mathbf{j}$	M1A1
	$\mathbf{v}_{W} = 3v\mathbf{i} + (u - 4v)\mathbf{j}$ $w\mathbf{i} = \mathbf{v}_{W} - \frac{u}{5}(-3\mathbf{i} + 4\mathbf{j})$ $3u = 4u$	M1A1
	$\mathbf{v}_W = (w - \frac{3u}{5})\mathbf{i} + \frac{4u}{5}\mathbf{j}$	
	$(u-4v) = \frac{4u}{5}$	M1
	$v = \frac{u}{20}$	A1
	$v = \frac{u}{20}$ $\mathbf{v}_{W} = \frac{3u}{20}\mathbf{i} + \frac{4u}{5}\mathbf{j}$	A1
		7

Question Number	Scheme	Marks
Q2 (a)	$\uparrow 2 \qquad \uparrow 1$ $1 \leftarrow \qquad \rightarrow 1$ $S \ 0.3 \text{kg} \qquad T \ 0.6 \text{ kg}$ $2 \qquad \uparrow \qquad \uparrow 1$ $\rightarrow \qquad v \qquad w \leftarrow$ $0.3 v - 0.6 w = 0.3$ $v - 2 w = 1$ $\frac{1}{2} (v + w) = 2$ $v + w = 4$ $w = 1, v = 3$ (i) $\mathbf{u}_1 = 3\mathbf{i} + 2\mathbf{j}$ (ii) $\mathbf{u}_2 = -\mathbf{i} + \mathbf{j}$	M1 A1 M1 A1 A1 A1
(b)	$\uparrow 1$ $v \leftarrow$ $v = 0.5$ $1 \uparrow$ $\rightarrow 1$ $\downarrow 45$	(6) B1
(c)	$\tan \theta = 0.5$ $\theta = 26.6$ $\tan \theta = \text{their } v$ $\det \theta = 45 + 26.6 = 71.6^{\circ}$ $\text{KE Loss} = \frac{1}{2} \ge 0.6 \ge \left\{ (1^{2} + 1^{2}) - (1^{2} + v^{2}) \right\}$	M1 A1 M1 A1 (5) M1 A1
	= 0.225 J	A1 (3) 14

Question Number	Scheme	Marks
Q3 (a)	$A \xrightarrow{8 \text{ km}} B$	M1
	$\cos\theta = \frac{6}{10} \Longrightarrow \theta = 53.1^{\circ}$ Bearing is 307°	M1 A1 A1
		(4)
(b)	$d = 8 \sin\theta (=8 \times 0.8)$ $= 6.4 \text{ km}$	M1 A1 A1 (3)
(c)	$T = \frac{8\cos\theta}{\sqrt{10^2 - 6^2}}$ = 0.6 hrs	M1 A1
	i.e. the time is 12:36 pm	A1 (3) 10

Question Number	Scheme	Marks
Q4 (a)	$(1 \cdot v^2) = dv$	M1 01
(a)	$-mg(1+\frac{v^2}{k^2}) = m\frac{\mathrm{d}v}{\mathrm{d}t}$ $g\int_0^T \mathrm{d}t = \int_U^0 \frac{-k^2 \mathrm{d}v}{(k^2+v^2)}$	M1 A1 DM1
	$T = \frac{k}{g} \left[\tan^{-1} \frac{v}{k} \right]_{0}^{U}$	A1
	$=\frac{k}{g}\tan^{-1}\frac{U}{k}$	DM1A1
(b)	$-mg(1+\frac{v^2}{k^2}) = mv\frac{\mathrm{d}v}{\mathrm{d}x}$	(6) M1 A1
	$g\int_{0}^{H} dx = \int_{U}^{0} \frac{-k^{2}v dv}{(k^{2} + v^{2})}$	DM1
	$H = \frac{k^2}{2g} \left[\ln(k^2 + v^2) \right]_0^U$	A1
	$H = \frac{k^2}{2g} \ln \frac{(k^2 + U^2)}{k^2}$	DM1A1
		(6) 12

Question Number	Scheme	Marks	
Q5 (a)	$\sqrt{4a^2 + 16a^2 - 16a^2 \sin \theta}$ Let length of string be L.	M1 A1	
	$V = -4mga\cos\theta - mg(L - \sqrt{4a^2 + 16a^2 - 16a^2}\sin\theta)$ $= -4mga\cos\theta - mgL + 2mga\sqrt{5 - 4\sin\theta}$	M1 A1	
	$= 2mga \left\{ \sqrt{5 - 4\sin\theta} - 2\cos\theta \right\} + \text{constant} **$	A1	(5)
(b)	$V'(\theta) = 2mga \left\{ \frac{-2\cos\theta}{\sqrt{5 - 4\sin\theta}} + 2\sin\theta \right\}$ For equilibrium, $V'(\theta) = 0$	M1 A1	
	$\left\{\frac{-2\cos\theta}{\sqrt{5-4\sin\theta}} + 2\sin\theta\right\} = 0$	M1	
	$\frac{\cos^2 \theta}{5 - 4\sin \theta} = \sin^2 \theta$ $1 - \sin^2 \theta = \sin^2 \theta (5 - 4\sin \theta)$ $4\sin^3 \theta - 6\sin^2 \theta + 1 = 0 \qquad **$	DM1 A1	(5)
(c)	$V''(\theta) = 2mga\left(\frac{\left\{\sqrt{5-4\sin\theta} \cdot 2\sin\theta - \frac{-2\cos\theta \cdot (-4\cos\theta)}{2\sqrt{5-4\sin\theta}}\right\}}{(5-4\sin\theta)} + 2\cos\theta\right)$ $V''(\frac{\pi}{6}) = 2mga\left\{\frac{\sqrt{3} - \frac{8x\frac{3}{4}}{2\sqrt{3}}}{3} + \sqrt{3}\right\} = 2mga\sqrt{3} > 0 \text{ so stable}$	M1 A1 A1	
	$V''(\frac{\pi}{6}) = 2mga\left\{\frac{\sqrt{3} - \frac{8x\frac{3}{4}}{2\sqrt{3}}}{3} + \sqrt{3}\right\} = 2mga\sqrt{3} > 0 \text{ so stable}$	DM1 A1	
			(5) 15

Question Number	Scheme		Marks	
Q6				
(a)	$T_1 = \frac{2mge}{a}; \ T_2 = \frac{mg(2a-e)}{a}$		B1 (either)	
	$T_1 = T_2$ 2e = (2a - e)		M1 A1	
	$e = \frac{2a}{3}$	**		
	$AP = a + \frac{2a}{3} = \frac{5a}{3}$	ጥጥ	A1	(4)
(b)	$T_2 - T_1 - 4m\omega \dot{x} = m\ddot{x}$			
	$\frac{mg}{a}\left(\frac{4a}{3} - x\right) - \frac{2mg}{a}\left(\frac{2a}{3} + x\right) - 4m\omega\dot{x} = m\ddot{x}$		M1 A3	
	$\ddot{x} + 4\omega\dot{x} + \frac{3g}{a}x = 0$.t.t.		
	$\ddot{x} + 4\omega\dot{x} + 3\omega^2 x = 0$	**	A1	(5)
(c)	$\lambda^{2} + 4\omega\lambda + 3\omega^{2} = 0$ $(\lambda + 3\omega)(\lambda + \omega) = 0$		M1	
	$\lambda = -3\omega$ or $\lambda = -\omega$ $x = Ae^{-\omega t} + Be^{-3\omega t}$		A1	
	$\dot{x} = -\omega A e^{-\omega t} - 3\omega B e^{-3\omega t}$ $t = 0, \ x = \frac{1}{2}a, \ \dot{x} = 0$		M1 A1 M1	
	$\frac{1}{2}a = A + B$ $0 = -\omega A - 3\omega B$		A1	
	$A = \frac{3}{4}a, B = -\frac{1}{4}a$ $\dot{x} = v = \frac{3}{4}a\omega (e^{-3\omega t} - e^{-\omega t})$		A1 A1	
	$x = v = \frac{1}{4}u\omega (e^{-e})$		AI	(8) 17
				.,

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA024478 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results)

June 2011

GCE Mechanics M4 (6680) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at <u>www.edexcel.com</u>.

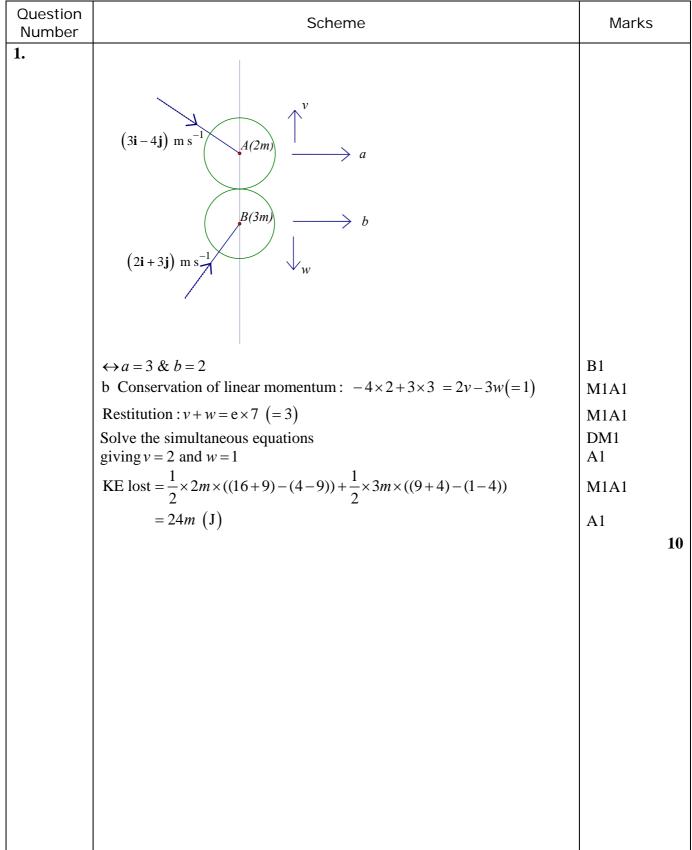
If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011 Publications Code UA028446 All the material in this publication is copyright © Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking


- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

June 2011 6680 Mechanics M4 Mark Scheme

Question Number	Scheme	Marks
2.	$ \begin{array}{c} & 5 \text{ m} \\ & 5-x & X & x \\ & 4 \text{ m} \\ & 4 \text{ m} \\ & B \\ & & V \\ & & V \\ & & & V \\ & & & & & & \\ & & & & & & \\ & & & &$	
	At $X: \leftrightarrow u \sin \alpha = v \sin \beta$ $ \downarrow v \cos \beta = eu \cos \alpha $ $ 4v \cos \beta = 3u \cos \alpha $	M1A1 M1A1
	Eliminate $u \And v$ by dividing: $\frac{\tan \alpha}{3} = \frac{\tan \beta}{4}$ Substitute for the trig ratios: $\frac{5-x}{3\times 4} = \frac{x}{4\times 7.5}$ Solve for x : $37.5 - 7.5x = 3x$ $x = 3.57$ (m) or better, $\frac{25}{7}$	M1 DM1A1 DM1 A1 9
3. (a)	Velocity of C relative to $\mathbf{S} = (8\mathbf{i} + u\mathbf{j}) - (12\mathbf{i} + 16\mathbf{j})$ = $(-4\mathbf{i} + (u - 16)\mathbf{j})(\mathbf{m} \mathbf{s}^{-1})$	M1 A1 (2)
(b) (i)	C intercepts S \Rightarrow relative velocity is parallel to i . $\Rightarrow u - 16 = 0, u = 16$	M1A1 (2)
(ii)	10 km at 4 km h^{-1} takes 2.5 hours, so 2.30pm	M1A1 (2)

Question Number	Scheme	Marks
(c)	$u = 8$, relative velocity $= -4\mathbf{i} - 8\mathbf{j}$. $s \xrightarrow{A} 10 \qquad 0$ $d \qquad -4\mathbf{i} - 8\mathbf{j} \text{ m s}^{-1}$	B1
	Correct distance identified Using velocity: $\tan \theta = \frac{8}{4} = 2 \Rightarrow \sin \theta = \frac{2}{\sqrt{5}}$	B1
	Using distance: $\sin \theta = \frac{d}{10} = \frac{2}{\sqrt{5}}$,	M1A1
	$d = \frac{20}{\sqrt{5}} = 4\sqrt{5} = 8.9 \text{ (km)}$	A1 (5) 11

Question Number	Scheme	Marks	
4. (a)	$W rel H$ 25° 40° 5 25° H 40° 5 H 40° 5 H 40°		
	2 vector triangles with a common side correct and drawn on a single diagram Wind is from bearing 025°, (N 25° E)	M1 A1 A1	(3)
(b)	$\frac{5}{\sin 25^{\circ}} = \frac{W}{\sin 40^{\circ}}$ (ft on their 25°)	M1A1ft	
	$W = \frac{5 \times \sin 40^{\circ}}{\sin 25^{\circ}} = 7.6 \left(\text{km h}^{-1} \right)$	M1A1	
			(4)

Question Number	Scheme	Marks
5. (a)	Need an equation linking speed and displacement, so $mv \frac{dv}{dx} = -(a+bv^2)$ Separating the variables: $\int \frac{6v}{a+bv^2} dv = \int -1dx$ Integrating : $\frac{3}{b} \ln(a+bv^2) = -x + (C)$ $X = \frac{3}{b} \left[\ln(a+bU^2) - \ln(a) \right] = \frac{3}{b} \ln \left[1 + \frac{bU^2}{a} \right]$ ** as required	M1A1 M1 A1 M1A1 (6)
(b)	Equation connecting v and t: $6\frac{dv}{dt} = -(12+3v^2)$ Separate the variables: $\int \frac{-6}{12+3v^2} dv = \int 1 dt$ $\int_U^0 \frac{-2}{4+v^2} dv = \int_0^U \frac{2}{4+v^2} dv = T$ $T = \frac{2}{2} \tan^{-1} \frac{U}{2} = \tan^{-1} \frac{U}{2}(s)$	M1 M1, A1 M1 A1 (5) 11

Question Number	Scheme	Marks	
6. (a)	Using F = ma: $4\frac{d^2x}{dt^2} = -9x - 12v$ $= -9x - 12\frac{dx}{dt}$ Hence $4\frac{d^2x}{dt^2} + 12\frac{dx}{dt} + 9x = 0 **$	M1A1 M1 A1	
(b)	Auxiliary eqn : $4m^2 + 12m + 9 = 0$, $(2m+3)^2 = 0, m = -3/2, \ \lambda = 3/2$ $t = 0, x = 4 \Rightarrow B = 4$ $t = 0, \ \dot{x} = e^{-\lambda t} \left(-\lambda \left(At + B \right) + A \right) = 0 \Rightarrow -6 + A = 0, \ A = 6$	B1 B1 B1 B1 B1	(4)
(c)	$\dot{x} = e^{-\frac{3}{2}t} \left(-\frac{3}{2}(6t+4)+6\right) = -9te^{-\frac{3}{2}t}$ $\ddot{x} = e^{-\frac{3}{2}t} \left(-9 - (-9t) \times \frac{3}{2}\right),$ so acceleration = 0 when $t = 2/3$ at which time, $v = -6e^{-1}$, so max speed = $6/e \approx 2.21 \text{ m s}^{-1} (3\text{ sf})$	M1A1 M1 A1, A1	(5) 13

Question	Scheme	Marks	
Number 7. (a)	$\begin{array}{c} B \\ \theta \\ 2\theta \\ 2\theta \\ 2mg \\$		
	$\frac{\theta}{R} = \frac{2a}{A}$ BR = 2×2a cos θ = 4a cos θ EPE = $3mg \frac{(4a cos \theta)^2}{2 \times 2a}$	B1 M1	
	$=12mga\cos^2\theta = 6mga + 6mga\cos 2\theta$	A1	
	GPE: taking AR as the level of zero GPE, GPE = GPE of AB + GPE of BC $= 4mg \times a \sin 2\theta + 2mg (2a \sin 2\theta - a / 2 \cos 2\theta)$ $= 8mga \sin 2\theta - mga \cos 2\theta$ $\Rightarrow \text{Total } V = 8mga \sin 2\theta + 5mga \cos 2\theta + \text{constant, as required. **}$	M1+M1 A1 A1	(7)
(b)	$\frac{dV}{d\theta} = 16mga\cos 2\theta - 10mga\sin 2\theta$ $\frac{dV}{d\theta} = 0 \Rightarrow 10\sin 2\theta = 16\cos 2\theta$	M1 A1 M1	
	$\Rightarrow \tan 2\theta = \frac{8}{5} \Rightarrow \theta = 0.51 \text{ radians } (29.0^\circ)$	A1	
	Or: $8mga\sin 2\theta + 5mga\cos 2\theta = \sqrt{89}mga\cos(2\theta - \alpha)$, $\tan \alpha = \frac{8}{5}$ t. pts when $2\theta - \alpha = n\pi \Rightarrow \theta = 0.51$ rads.	M1A1 M1A1	(4)
(c)	$\frac{d^2 V}{d\theta^2} = -32mga\sin 2\theta - 20mga\cos 2\theta$	M1	
	$\frac{d^2 V}{d\theta^2} = -32mga\sin 2\theta - 20mga\cos 2\theta$ $\theta = 0.51 \Rightarrow \frac{d^2 V}{d\theta^2} < 0, \text{ equilibrium is unstable.} \qquad \text{cso}$	M1A1	(2)
	Or: $2\theta - \alpha = 0 \implies \cos(2\theta - \alpha) = 1$		(3) 14
	Max value \Rightarrow equilibrium is unstable		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email publication.orders@edexcel.com Order Code UA028446 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/guals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2012

GCE Mechanics M4 (6680) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

earson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

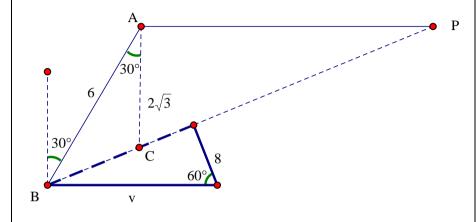
Summer 2012 Publications Code UA032684 All the material in this publication is copyright © Pearson Education Ltd 2012

June 2012 6680 Mechanics M4 Mark Scheme

Question Number	Scheme	Marks	Notes
1. (a)	u u u v v v v v v v v v		
	$mu\cos\alpha = mw + 2mV$	M1 A1	CLM parallel to the line of centres. $\frac{4}{5}u = w + 2V$. Need all terms but condone sign errors.
	$eu\cos\alpha = -w + V$	M1 A1	Impact law. Must be the right way round. $\frac{3}{4} \times \frac{4}{5}u = V - w$
	$u \cos \alpha(e+1) = 3V \Longrightarrow (i) \ u = \frac{15V}{7}$	M1 A1	Eliminate <i>w</i> and solve for <i>u</i> in terms of <i>V</i> or v.v. 2.14 <i>V</i> or better Solve for <i>w</i> in terms of <i>V</i> 0.286 <i>V</i> or better
	$\Rightarrow w = -\frac{2V}{7}$	A1 M1	Use of Pythagoras with their $u \sin \alpha$ and w . $\sqrt{\left(\frac{-2V}{7}\right)^2 + \left(\frac{15V}{7} \times \frac{3}{5}\right)^2}$
	(ii) speed of $S = \sqrt{\left(\frac{-2V}{7}\right)^2 + \left(u\sin\alpha\right)^2} = \frac{V\sqrt{85}}{7}$	A1 (9)	$\sqrt{\left(\begin{array}{c}7\end{array}\right)^{1}\left(\begin{array}{c}7\end{array}\right)^{2}}$ $\sqrt{\frac{85}{49}}V$, accept 1.32V or better

Question Number	Scheme	Marks	Notes
(b)	$\tan\theta = \frac{\frac{9V}{7}}{\frac{2V}{2}} = \frac{9}{2}$	M1	Direction of <i>S</i> after the collision. Condone $\frac{2}{9}$
	$\frac{2V}{7}$	A1	77.5° or 12.5° seen or implied
			Combine their θ and α to find the required angle.
	defin angle = $180^{\circ} - (\theta + \alpha)$	DM1	e.g. $12.5^{\circ} + \tan^{-1}\left(\frac{4}{3}\right)$
	$= 65.7^{\circ} (3 \text{ sf})$	A1	Accept 66°
		(4) 13	

Question Number	Scheme	Marks	Notes
2.	With <i>B</i> as origin,		
	$\mathbf{r}_A = (6\sin 30\mathbf{i} + 6\cos 30\mathbf{j})$	M1	Express the original relative positions in component (vector) form – one term correct.
	$= (3)\mathbf{i} + (3\sqrt{3})\mathbf{j}$	A1	Both terms correct (substitution of trig values not required).
	$\mathbf{r}_{B} = vt\mathbf{i}$ or $\mathbf{v}_{B} = v\mathbf{i}$	B1	Position of <i>B</i> at time <i>t</i> (seen or implied)
	$(v-4)i + (4\sqrt{3})j$	M1	Express the relative velocity in component form – one term correct.
	or $(v - 8\sin 30)i + (8\cos 30)j$	A1	Both terms correct
	When <i>B</i> is $2\sqrt{3}$ km south of <i>A</i> ,		
	$-3\sqrt{3} + 4\sqrt{3}t = -2\sqrt{3} \Longrightarrow t = \frac{1}{4}$	M1	Compare j displacement with $\pm 2\sqrt{3}$ and solve for <i>t</i>
	$5\sqrt{5}$ $+\sqrt{5}i$ $-2\sqrt{5} \rightarrow i$ -4	A1	cao
	$vt - 3 - 4t = 0 \implies v = 16$	M1 A1	Equate i displacement to zero and substitute their value of <i>t</i> .
	When B is due east of A ,	AI	cao
	$-3\sqrt{3} + 4\sqrt{3}t = 0 \Longrightarrow t = \frac{3}{4}$ i.e. at 12.45 pm	M1	Equate \mathbf{j} displacement to zero and solve for t .
		A1	Any equivalent form for the time.
	then distance $AB = 16x \frac{3}{4} - 3 - 4x \frac{3}{4} = 6$ km.	M1 A1	Substitute their $v \& t$ in the i displacement and evaluate cao. Must be a scalar.
		13	
			See over page for geometrical alternative


or	Triangle ABC: cosine rule gives	M1A1
	$BC^2 = 36 + 12 - 2 \times 6 \times 2\sqrt{3}\cos 30$	
	Solve for <i>BC</i> and $\angle ABC$	M1A1
	$BC = 2\sqrt{3}, \rightarrow$ triangle is isosceles	
	$\angle B$ in velocity triangle is 30°	B1
	Trig in rt∠ triangle gives relative velocity	M1A1
	$=8 \times \tan 60 = 8\sqrt{3}$	
	$\angle APB = 30^{\circ}$ (angles of a triangle) so triangle	M1A1
	is isosceles and	
	distance $AP = 6$ km	
	Using cosine rule or symmetry of isosceles	M1A1
	triangle, distance $BP = 6\sqrt{3}$	
	Time taken $=\frac{6\sqrt{3}}{8\sqrt{3}}=\frac{3}{4}$ hr, time is now 12.45	M1A1

T

1

The given information provides us with two triangles - velocities in bold.

Fix A and B follows the path BP. C is the point when B is due South of A, and P when it is due East.

3. (a)

$$2mg - T - kv^{2} = 2ma$$

$$T - mg - kv^{2} = ma$$
Adding, $mg - 2kv^{2} = 3ma$

$$\frac{2g}{3} - \frac{4kv^{2}}{3m} = 2v\frac{dv}{dx}$$
Adding, $mg - 2kv^{2} = 3ma$

$$\frac{2g}{3} - \frac{4kv^{2}}{3m} = 2v\frac{dv}{dx}$$

$$\frac{d(v^{2})}{dx} + \frac{4kv^{2}}{3m} = \frac{2g}{3} + \frac{2g}{3} + \frac{4kv^{2}}{3m} = \frac{2g}{2k} + \frac{4kv^{2}}{3m} = \frac{2g}{2k} + \frac{2g}{2k} + \frac{4kv^{2}}{3m} = \frac{2g}{2k} + \frac{2g}{2k} + \frac{4kv^{2}}{2k} = \frac{2g}{3} + \frac{4kv^{2}}{2k} + \frac{2g}{2k} + \frac{4kv^{2}}{2k} = \frac{2g}{3} + \frac{4kv}{2k} + \frac{2g}{2k} + \frac{4kv^{2}}{2k} + \frac{2g}{2k} + \frac{4kv^{2}}{2k} + \frac{2g}{2k} + \frac{4kv}{2k} + \frac{2g}{2k} + \frac{4kv^{2}}{2k} + \frac{2g}{2k} + \frac{4kv^{2}}{2k} + \frac{2g}{2k} + \frac{4kv}{2k} + \frac{2g}{2k} + \frac{2g}{2$$

(c) When
$$x = 0, T = \frac{4mg}{3}$$

As $x \to \infty, T \to \frac{9mg}{6} = \frac{3mg}{2}$
Hence, $\frac{4mg}{3} \le T < \frac{3mg}{2}$. *
(5)16

Substitute v = 0 in the initial equations and solve for *T*

For large x, $v^2 \rightarrow \frac{mg}{2k}$. Substitute in the initial equations and solve for *T*

cwo – answer is given.

4. (a)	45° 20 5			
OR	$\frac{\sin \theta}{5} = \frac{\sin 45}{20}$ $\theta = 10.182$ Bearing is $45^\circ - \theta = 34.8 = 35^\circ$ (nearest degree) $SW \rightarrow (20\sin \theta)T = (5 + 20\cos \theta)T$	M1 A1 M1 A1 (4) M1	Use a vector triangle to find θ . Condone the 5 ms ⁻¹ in the wrong direction. Correct equation for θ Use their angle correctly in their triangle to find the bearing. Accept alternative forms e.g. N 35 E 45° rt angle triangle	
(b)	$3t^{2} + 8t - 5 = 0, \ t = \frac{-8 + \sqrt{124}}{6} = 0.5225$ $\theta = 55.18 \text{ Bearing is } 90 - \theta = 34.8^{\circ}$ $v^{2} = 5^{2} + 20^{2} - 2x5x20\cos 124.818$	M1 A1 M1A1 (4) M1	t substitution leading to correct equation in <i>t</i> , use of $R\cos(\theta + \alpha)$ o.e. Complete method to find <i>v</i>	
	$V = 3 + 20 - 2x3x20\cos 124.818$ $OR \ v = \frac{20}{\sin 45} \times \sin 124.8$ $OR \ v = 5\cos 45 + 20\cos \theta$ $v = 23.22$	A1	Or better $\left(\frac{5\sqrt{2}+5\sqrt{62}}{2}\right)$	
	$t = \frac{15}{23.22} = 0.646$ h= 39 min (nearest min)	M1 A1 (4)	$\frac{15}{\text{their } v}$ The Q specifies "nearest minute"	
(c) (d)	Due N, (since current affects both equally) $t = \frac{4}{20} = 0.2 \text{ h} = 12 \text{ min}$	B1 (1) B1 (1) 10	cao cso	

6.(a)
$$T_1 = mg + T_2$$
M1
A1No resultant force and use of Hooke's law
Correct equation in one unknown
 $\frac{3mg(AP-a)}{a} = mg + \frac{mg(3a-AP)}{a}, 3AP-3a = a+3a-AP$ (b) $mg + T_2 - T_1 - mkv = mkg$
 $mg + \frac{mg(\frac{5}{4}a - x)}{a} - \frac{3mg(\frac{3}{4}a + x)}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - \frac{3mg(\frac{3}{4}a + x)}{a} - mkv = mkg$ (3)
A1(c)For a damped oscillation, $k^2 < \frac{16g}{a}$
 $i.e. \ k < 4\sqrt{\frac{g}{a}}$ M1
A1
A1No resultant force and use of Hooke's law
Correct equation in one unknown
 $\frac{3mg(AP-a)}{a} = mg + \frac{mg(3a-AP)}{a}, \ 3AP-3a = a+3a-AP$
Derive given result correctly.
Condone verification for $3/3$ (c) $mg + T_2 - T_1 - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a} x = 0}{a} - mkv = mkg$
 $\frac{kg + kg + \frac{4g}{a}$

is A0.

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA032684 Summer 2012

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Llywodraeth Cynulliad Cymru Welsh Assembly Government

Mark Scheme (Results)

Summer 2013

GCE Mechanics 4 (6680/01R)

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2013 Publications Code UA036436 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

General Rules for Marking Mechanics

• Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.

- Omission or extra g in a resolution is accuracy error not method error.
- Omission of mass from a resolution is method error.
- Omission of a length from a moments equation is a method error.

• Omission of units or incorrect units is not (usually) counted as an accuracy error.

- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.
- N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *ONCE* per complete question.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.

Misreads – if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft.

Question Number	Scheme	Marks	
1. (a)	$_{A}\mathbf{v}_{B}=\mathbf{v}_{A}-\mathbf{v}_{B}$		
	$=-3\mathbf{i}+9\mathbf{j}$ km h ⁻¹	M1	
	Mag = $\sqrt{9+81} = 3\sqrt{10}$	M1A1	9.5 or better
	-	(3)	
(b)	$\tan \theta = \frac{3}{9}$	M1	Allow \pm or reciprocal
	$\theta = 18.4^{\circ}$		Or 71.6°
	Direction = $360 - 18.4$		
	= 342°	A1	Allow 341.6°
		(2)	
		[5]	

Question Number	Scheme	Marks	
2.			
	CLM: $u \sin \alpha = v \cos \alpha$	M1 A1	Must be in correct direction but condone trig confusion
	Impact: $\frac{1}{3}u\cos\alpha = v\sin\alpha$	M1 A1	Condone consistent trig confusion
	$\frac{1}{3} \times \frac{1}{\tan \alpha} = \tan \alpha$ $\tan \alpha = \frac{1}{\sqrt{3}}$	M1	
	$\alpha = 30^{\circ} \text{ (or } \frac{\pi}{6} \text{ or } 0.52 \text{ rad)}$	A1 (6) [6]	

Question Number	Scheme	Marks	
3. (a)	$B \xrightarrow{v} A \xrightarrow{b} B \xrightarrow{v} A \xrightarrow{b} W$		
(b)	After impact <i>B</i> moves perpendicular to the line of centres Perp. to line of centres: V = $u \sin 60 = u \frac{\sqrt{3}}{2}$ Parallel to line of centres: Con of Mom $3mu \cos 60 + 5m \times 0 = 3m \times 0 + 5mw$ N.L.R. $eu \cos 60 = w$ $\frac{1}{2}eu = w \& \frac{3}{2}u = 5w$ $\rightarrow \frac{1}{2}eu = \frac{3}{10}u$ $e = \frac{3}{5}$	B1 M1A1 (3) M1A1 M1A1 DM1 A1 (6) [9]	can be implied by appropriate use of θ in an equation, or seen on the diagram Dependent on the two previous M marks

Question Number	Scheme	Marks	
4.	5 km h^{-1} 6 km h^{-1} B	B1	Right angled triangle with the right angle opposite the 6 seen in diagram or implied in working
(a)	$\sin \theta = \frac{5}{6}$ $\theta = 56.44$ Bearing = 056°	M1 A1 A1	Correct trig. Allow 56.4°
(b)	Least distance = $4\cos\theta = \frac{(4\sqrt{11})}{6}$ or 2.211 km oe	(4) M1 A1	Correct for their angle 2.2 or better
(c)	${}_{B}v_{A} = \sqrt{6^{2} - 5^{2}} = \sqrt{11}$ $t = \frac{4\sin\theta}{\sqrt{11}} (=1.0050)$ time = 11 am	(2) B1 M1 A1ft B1 (4) [10]	3.32 Condone consistent trig confusion Ft on their √11

Question Number	Scheme	Marks	
5.	$kv \leftarrow F$		
(a)	$Fv = 40000$ $1200 \frac{dv}{dt} = \frac{40000}{v} - kv$ $\frac{dv}{dt} = 0.3 \qquad 1200 \times 0.3 = \frac{40000}{40} - 40k$ $k = 16$ $1200 \frac{dv}{dt} = \frac{40000}{v} - 16v$	M1 A1 M1 A1	Use initial conditions to find <i>k</i>
	$1200v \frac{dv}{dt} = 40000 - 16v^{2}$ $75v \frac{dv}{dt} = 2500 - v^{2}$	M1 A1 (6)	<u>Given Answer</u>
(b)	$75\int \frac{v}{2500 - v^2} dv = \int dt$	M1	Separate and attempt integration
	$-\frac{75}{2}\ln(2500-v^2) = t (+c)$	A1	
	$t = 0 v = 0 \implies -\frac{75}{2} \ln 2500 = c$	M1	Use initial values to find <i>c</i>
	$-\frac{75}{2}\ln\left(\frac{2500-v^2}{2500}\right) = t$	A1	Or equivalent
	$\frac{2500 - v^2}{2500} = e^{-\frac{2t}{75}} \rightarrow v^2 = 2500 \left(1 - e^{-\frac{2t}{75}}\right)$	M1	Find v or v^2 in terms of t
	$v = 50\sqrt{1 - e^{-\frac{2t}{75}}}$	A1	
		(6) [12]	

Question Number	Scheme	Marks	
6.	$\begin{array}{c} E \\ 3l \\ 2l \\ 4mg \end{array} \\ B \\ 4mg \end{array}$		
(a)	Length of string = $2 \times 3l \sin \theta$ Extension = $6l \sin \theta - l$ E.P.E. = $\frac{4mg}{2l} (6l \sin \theta - l)^2$ G.P.E. of rod = $4mg \times 2l \cos 2\theta$ G.P.E. of mass at $B = kmg \times 4l \cos 2\theta$	B1	
	$V = \frac{4mg}{2l} (6l\sin\theta - l)^2 + 8mgl\cos 2\theta + 4kmgl\cos 2\theta + \text{ const}$	M1 A2	EPE term needs to be dimensionally correct. Need all three terms. Correct unsimplified
	$V = \frac{4mg}{2l} (6l\sin\theta - l)^2 + 8mgl(1 - 2\sin^2\theta) + 4kmgl\cos 2\theta + \text{const}$	M1	All in $\sin \theta$
	$= 2mgl(36\sin^2\theta - 12\sin\theta - 8\sin^2\theta - 4k\sin^2\theta) + \text{ const}$ $= 8mgl((7-k)\sin^2\theta - 3\sin\theta) + \text{ constant}$	A1 (6)	Given Answer

Question Number	Scheme	Marks	
(b)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = 8mgl\left(2(7-k)\sin\theta\cos\theta - 3\cos\theta\right)$	M1	Differentiate
	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = 0 \qquad \left(2\left(7-k\right)\sin\theta - 3\right)\cos\theta = 0$	M1	Set derivative = 0
	$\sin\theta = \frac{3}{2(7-k)}$ (or $\cos\theta = 0$, need not be seen)	A1	
	$\theta \leqslant \frac{\pi}{6} \Rightarrow \frac{3}{2(7-k)} \leqslant \frac{1}{2}$	M1	Use of $\sin\theta \le \frac{1}{2}$
	$3 \leqslant 7-k$ $k \leqslant 4$ *	A1 (5)	
(c)	$k = 4 \implies \theta = \frac{\pi}{6}$	B1	
	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = 8mgl \Big[6\cos^2\theta - (6\sin\theta - 3)\sin\theta \Big]$	M1	Second derivative (8mgl or 24mgl not needed)
			$\left[\text{ or differentiate } 8mgl(3\sin 2\theta - 3\cos \theta) \right]$
	$=8mgl\left[6\times\left(\frac{\sqrt{3}}{2}\right)^2-6\times\left(\frac{1}{2}\right)^2+3\times\frac{1}{2}\right]$	A1	Numerical unsimplified
	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} > 0$	M1	by numerical evaluation or justification from trig terms $(36mgl)$
	V is min. \therefore stable equilibrium	A1	CSO
		(5) [16]	

Question Number	Scheme	Marks	
7 7	$ \begin{array}{c c} & & & & & & & & & \\ & & & & & & & & &$		
(a)	In equilibrium $T = 0.5g = \frac{2.7e}{0.6}$ $e = \frac{g}{9} = \frac{9.8}{9} = \frac{49}{45}$ $0.6 + \frac{49}{45} - 4\sin 2t + y = 0.6 + x$ $y + \frac{49}{45} = x + 4\sin 2t$	M1 A1	
	$y + \frac{49}{45} = x + 4\sin 2t$	A1 (3)	Given Answer – must see justification
(b)	$0.5g - \frac{2.7x}{0.6} = 0.5\ddot{y}$ g - 9x = \ddot{y}	M1A1	Equation of motion for <i>P</i>
	$g - 9\left(y + \frac{g}{9} - 4\sin 2t\right) = \ddot{y}$ $\ddot{y} + 9y = 36\sin 2t$	DM1 A1 A1 (5)	Substitute for <i>x</i> Given Answer

Question Number	Scheme	Marks	
(c)	C.F. is $y = A\cos 3t + B\sin 3t$	M1	
	Gen. soln. is $y = A\cos 3t + B\sin 3t + \frac{36}{5}\sin 2t$	A1	
	$t = 0 y = 0 \implies A = 0$	B1	
	$\dot{y} = 3B\cos 3t + \frac{72}{5}\cos 2t$	M1	Independent. Differentiate and use initial conditions to find <i>B</i>
	$t=0 \dot{y}=0 \implies 3B=-\frac{72}{5} \qquad B=-\frac{24}{5}$		
	$\therefore y = -\frac{24}{5}\sin 3t + \frac{36}{5}\sin 2t$	A1	
(d)	$\dot{y} = -\frac{72}{5}\cos 3t + \frac{72}{5}\cos 2t$	(5) M1A1	
	$\dot{y} = -\frac{72}{5}\cos\pi + \frac{72}{5}\cos\frac{2}{3}\pi$	M1	Substitute $t = \frac{\pi}{3}$ in derivative to find \dot{y}
	$\dot{y} = 7.2$	A1	Final answer
		(4)	
		[17]	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA036436 Summer 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2013

GCE Mechanics 4 (6680/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA036433 All the material in this publication is copyright © Pearson Education Ltd 2013

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

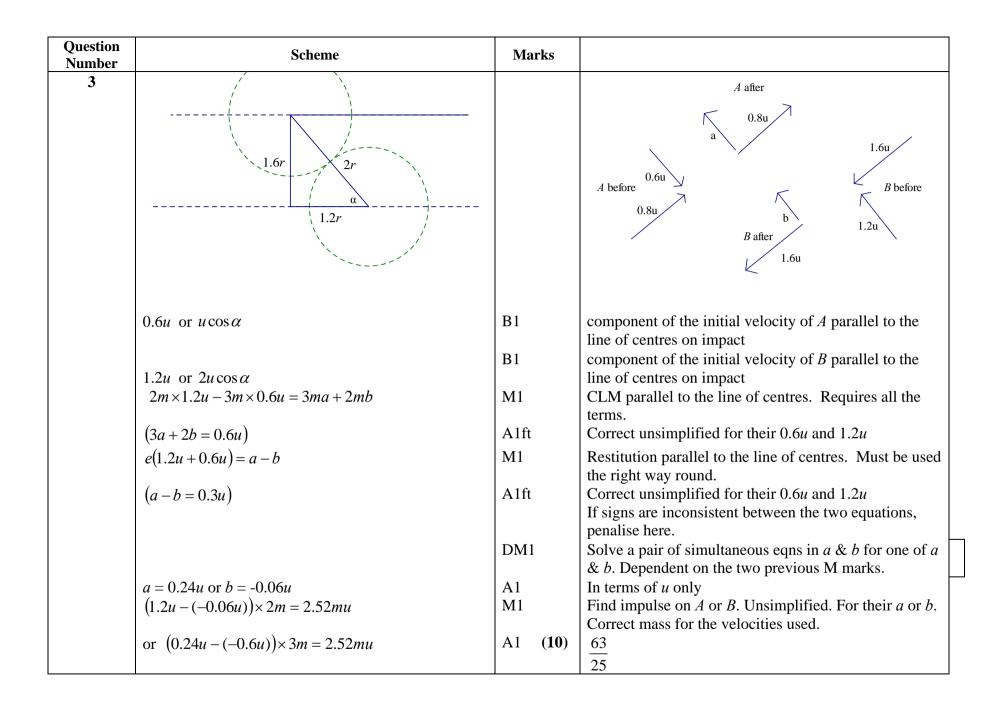
- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

General Rules for Marking Mechanics

• Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.

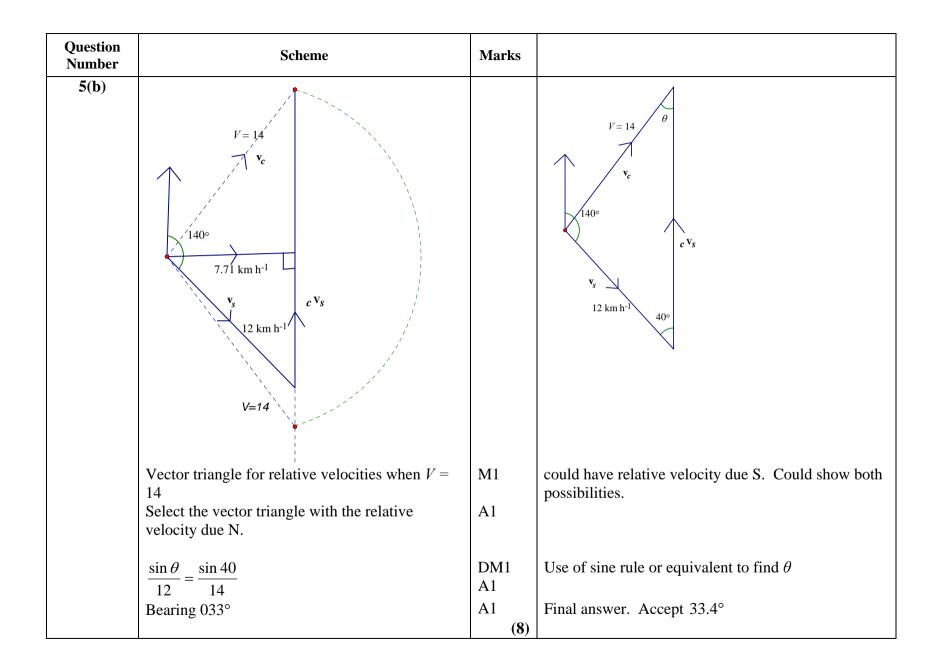
- Omission or extra g in a resolution is accuracy error not method error.
- Omission of mass from a resolution is method error.
- Omission of a length from a moments equation is a method error.

• Omission of units or incorrect units is not (usually) counted as an accuracy error.


- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.
- N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *ONCE* per complete question.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.

Misreads – if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft.

Question Number	Scheme	Marks	
1 (a)	Equation of motion: $\frac{1}{2}g - \frac{3}{2}v = \frac{1}{2}\frac{dv}{dt}$	M1	Differential equation. All 3 terms required but condone sign errors
		A1	
	NB: these two marks are available in (b) if not scored	in (a)	
	$\int 1 \mathrm{d}t = \int \frac{1}{9.8 - 3v} \mathrm{d}v$	M1	Separate the variables and attempt to integrate
	$t + (C) = -\frac{1}{3}\ln(9.8 - 3v)$	A1=A1	A1 for each side. C not needed
	$t = 0, v = 0 \Longrightarrow C = -\frac{1}{3} \ln 9.8$	M1	Use initial conditions to evaluate <i>C</i> or limits on a definite integral.
	$t = -\frac{1}{3} \ln \left(\frac{9.8 - 3v}{9.8} \right)$	A1	Or equivalent
	$3v = 9.8(1 - e^{-3t})$ *Given Answer*	A1 (8)	Watch out. cwo
(a) alt	Equation of motion: $\frac{1}{2}g - \frac{3}{2}v = \frac{1}{2}\frac{dv}{dt}$	M1 A1	All 3 terms required but condone sign errors
	$e^{3t} \frac{dv}{dt} + 3e^{3t}v = ge^{3t}, \ \frac{d}{dt}(ve^{3t}) = ge^{3t}$	M1	Use of integrating factor e^{3t}
	$ve^{3t} = \frac{1}{3}ge^{3t}(+c)$	A1=A1	A1 for each side. $+C$ not required.
	$t = 0, v = 0 \Longrightarrow 0 = \frac{1}{3}g + C$	M1	Use initial conditions to evaluate C
	$\Rightarrow ve^{3t} = \frac{1}{3}g(e^{3t}-1), \ 3v = 9.8(1-e^{-3t})$	A1 A1	Correct equation in any equivalent form Given form cwo


Question Number	Scheme	Marks	
1(b)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{9.8}{3} \left(1 - e^{-3t} \right) \implies x = \frac{9.8}{3} \left(t + \frac{1}{3} e^{-3t} \right) (+C)$	M1 A1	Integrate the given v to find x C not needed
	$t = 0, x = 0 \Longrightarrow C = -\frac{9.8}{9}$	M1 A1	Use the initial conditions to evaluate <i>C</i> or use limits correctly in a definite integral
	$t = 2, x \approx 5.4 (m)$	A1	5.45, $\frac{g}{9}(5+e^{-6})$ or equivalent
		(5) (13)	
(b) alt	$g - 3v = v \frac{\mathrm{d}v}{\mathrm{d}x}$		
	$\int 1 dx = \int \frac{v}{g - 3v} dv = \int -\frac{1}{3} + \frac{g}{3(g - 3v)} dv$	M1	Separate the variables and rearrange the RHS
	$x = -\frac{v}{3} - \frac{g}{9}\ln(g - 3v) + C$	A1	+C not needed
	$x = 0, v = 0 \Longrightarrow C = \frac{g}{9} \ln g$ and	M1	Use the initial conditions to find C & find the value of v when $t = 2$
	$t = 2, v = \frac{g}{3} \left(1 - e^{-6} \right) \left(= 3.258 \right)$	A1	
	$x = \frac{g}{9} \left(1 - e^{-6} \right) - \frac{g}{9} \ln \left(e^{-6} \right) = 5.4$	A1	
		(5) (13)	

Question Number	Scheme	Marks	
2(a)	Shortest time $50 \div \frac{10}{9} = 45$ (s)	M1,A1	
(b)	Drifts $\frac{2}{3}$ ×"45", = 30 (m)	M1 A1	$\frac{2}{3}$ × their time
(c)	$\frac{2}{3}$ B $\frac{10}{9}$ A $\frac{10}{9}$ $\frac{10}{4}$ $\frac{8}{9}$ 8	M1 A1	0.88 or better
	$50 \div "\frac{8}{9}", = 56.25 (s)$	DM1,A1 (8)	Dependent on the previous M 56 or better

Question Number	Scheme	Marks	
4 (a)	PE of ring = $-mgx$	B1	Taking the level of the peg as zero PE
	PE of particle = $-3mg(L - \sqrt{x^2 + d^2})$	M1 A1	
	$\Rightarrow V = 3mg\sqrt{x^2 + d^2} - mgx + \text{constant.} \mathbf{AG}$	A1 (1)	Watch out
(b)	$\frac{\mathrm{d}V}{\mathrm{d}x} = \frac{3mg.2x}{2\sqrt{x^2 + d^2}} - mg$	(4) M1	
	$\frac{dV}{dx} = 0 \implies 3x = \sqrt{x^2 + d^2}, 9x^2 = x^2 + d^2, 8x^2 = d^2$	M1	Set $\frac{dV}{dx} = 0$ and solve for x
	$x = \frac{d}{\sqrt{8}} = \left(\frac{\sqrt{2}d}{4}\right)$	A1	0.354 <i>d</i> of better
(c)	$\frac{d^2 V}{dx^2} = 3mg\left(\frac{\sqrt{x^2 + d^2} \cdot 1 - x \cdot \frac{2x}{2\sqrt{x^2 + d^2}}}{x^2 + d^2}\right) =$	M1	Product or quotient rule $\frac{d^2 V}{dx^2} = \frac{3mg}{\sqrt{x^2 + d^2}} - \frac{3mgx}{2} \cdot 2x \cdot (x^2 + d^2)^{-\frac{3}{2}}$
	$3mg\left(\frac{\sqrt{9x^2} \cdot 1 - x \cdot \frac{2x}{2\sqrt{9x^2}}}{9x^2}\right) = \frac{3mgd^2}{\left(x^2 + d^2\right)^{\frac{3}{2}}} \ (>0)$	A1	OR $= 3mg\left(\frac{3x-\frac{x}{3}}{9x^2}\right) (>0)$ Correct unsimplified.
	Stable	A1ft (10)	$\frac{16\sqrt{2}mg}{9d}, \ 2.5\frac{mg}{d}, \ \frac{d^2V}{d\theta^2} = \frac{9mgd}{\sqrt{8}}$ Correct conclusion for their expression

Question Number	Sc	heme	Marks	
5(a)		$ \begin{array}{l} \text{Minimum} \\ V = 12\cos 50^{\circ} \end{array} $	M1 A1	Use of triangle with right angle between v_c and $_Cv_s$. Condone sin/cos confusion. Correct unsimplified trig expression
	140° v _c <i>V</i> v _s 12 km h ⁻¹	≈7.71	A1	7.71 only

Question Number	Scheme	Marks	
6(a)	$A \xrightarrow{a} B \xrightarrow{U} B \xrightarrow{U} B$		
	a + Ut = y + (a + x)	M1	Diagram or clear explanation using distances
	Ut = x + y *Answer Given*	A1	Watch out for fudges.
(b)	$T = \frac{9ma \times x}{a} = 9mx$	B1	
	$T - 6m\dot{y} = m\ddot{y}$	M1	Equation of motion of P . Requires all 3 terms in terms of x and/or y
	$9mx - 6m(U - \dot{x}) = -m\ddot{x}$	A2	Expressed in terms of x 1 each error
	$\ddot{x} + 6\dot{x} + 9x = 6U$	A1	Answer given. Watch out for fudges
(c)	$t = 0, x = 0, \dot{x} = U$ $0 = AU + \frac{2U}{3}, A = -\frac{2}{3}$	M1 A1	Use initial conditions to find A
	5 5	M1	Differentiate
	$\dot{x} = BUe^{-3t} - 3(A+Bt)Ue^{-3t}$	A1	Differentiate
	U = BU - 3AU, $B = 3A + 1 = -1$	A1	
(d)	$\dot{y} = U - \dot{x} = U - \left(-Ue^{-3t} + 2Ue^{-3t} + 3Ute^{-3t}\right)$	M1	
	$= U \left(1 - e^{-3t} - 3t e^{-3t} \right)$	A1	Or equivalent
		(14)	

Scheme	Marks	
State that impulse acts perpendicular to the wall and demonstrate that $(2\mathbf{i} + \mathbf{j}).(-\mathbf{i} + 2\mathbf{j}) = 0$	B1	Requires scalar product or gradient diagram.
Impulse momentum equation: $m(\mathbf{v} - \mathbf{u}) = m[(a-b)\mathbf{i} + a\mathbf{j}] = \lambda(-\mathbf{i} + 2\mathbf{j})$ $\Rightarrow a = -2(a-b), \ 3a = 2b$	M1 A2 A1	Requires all terms present and of the correct structure -1 each error
OR Taking scalar products of velocities with $(2\mathbf{i} + \mathbf{j})$ $\begin{pmatrix} b \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2b$ and $\begin{pmatrix} a \\ a \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 3a$ No change parallel to the wall so $2b = 3a$.	M1 A1A1 A1	
Scalar products with $(-\mathbf{i} + 2\mathbf{j})$: $\binom{b}{0} \cdot \binom{-1}{2} = -b$ and $\binom{a}{a} \cdot \binom{-1}{2} = a$	B1	
Impact equation: $a=eb$ $e = \frac{2}{3}$	M1A1 A1	
	State that impulse acts perpendicular to the wall and demonstrate that $(2\mathbf{i} + \mathbf{j}).(-\mathbf{i} + 2\mathbf{j}) = 0$ Impulse momentum equation: $m(\mathbf{v} - \mathbf{u}) = m[(a-b)\mathbf{i} + a\mathbf{j}] = \lambda(-\mathbf{i} + 2\mathbf{j})$ $\Rightarrow a = -2(a-b), \ 3a = 2b$ OR Taking scalar products of velocities with $(2\mathbf{i} + \mathbf{j})$ $\begin{pmatrix} b \\ 0 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2b \text{ and } \begin{pmatrix} a \\ a \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 3a$ No change parallel to the wall so $2b = 3a$. Scalar products with $(-\mathbf{i} + 2\mathbf{j})$: $\begin{pmatrix} b \\ 0 \end{pmatrix} \bullet \begin{pmatrix} -1 \\ 2 \end{pmatrix} = -b \text{ and } \begin{pmatrix} a \\ a \end{pmatrix} \bullet \begin{pmatrix} -1 \\ 2 \end{pmatrix} = a$ Impact equation: $a = eb$	State that impulse acts perpendicular to the wall and demonstrate that $(2\mathbf{i} + \mathbf{j}).(-\mathbf{i} + 2\mathbf{j}) = 0$ B1Impulse momentum equation: $m(\mathbf{v} - \mathbf{u}) = m[(a-b)\mathbf{i} + a\mathbf{j}] = \lambda(-\mathbf{i} + 2\mathbf{j})$ $\Rightarrow a = -2(a-b), 3a = 2b$ M1 A2 A2 A1OR Taking scalar products of velocities with $(2\mathbf{i} + \mathbf{j})$ $\begin{pmatrix} b \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2b$ and $\begin{pmatrix} a \\ a \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 3a$ No change parallel to the wall so $2b = 3a$.M1 A1A1Scalar products with $(-\mathbf{i} + 2\mathbf{j})$: $\begin{pmatrix} b \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 2 \end{pmatrix} = -b$ and $\begin{pmatrix} a \\ a \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 2 \end{pmatrix} = a$ Impact equation: $a = eb$ M1A1

Question Number	Scheme	Marks	
7(b) alt	a√2 bθ		
	$b\cos\theta = a\sqrt{2}\cos(45-\theta)$ $b\cos\theta = a\cos\theta + a\sin\theta, \ 2b - 2a = a$ 2b = 3a Use of $\tan\theta = \frac{1}{2}$ $a\sqrt{2}\sin(45-\theta) = eb\sin\theta$ $a\cos\theta = (a+eb)\sin\theta, \ 2a = a+eb$ $e = \frac{2}{3}$	M1 A2 A1 B1 M1 A1	Parallel to the wall. Condone trig confusion? -1 each error. Both angles in same variable? When seen in (b). Implied by 26.6 or 18.4 Perpendicular to the wall. Condone consistent trig confusion? $e = \sqrt{\frac{10a^2}{b^2} - 4}$ 0.67 or better
(c)	Fraction of KE lost $= \frac{b^2 - 2a^2}{b^2}$ $= \frac{1 - 2 \times \frac{4}{9}}{1} = \frac{1}{9}$	M1A1 A1 (12)	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UA036433 Summer 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Mechanics 4R (6680/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code UA039506 All the material in this publication is copyright © Pearson Education Ltd 2014

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:

<u>'M' marks</u>

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.

e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc. The following criteria are usually applied to the equation.

To earn the M mark, the equation

(i) should have the correct number of terms

(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

<u>'A' marks</u>

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. MO A1 is impossible.

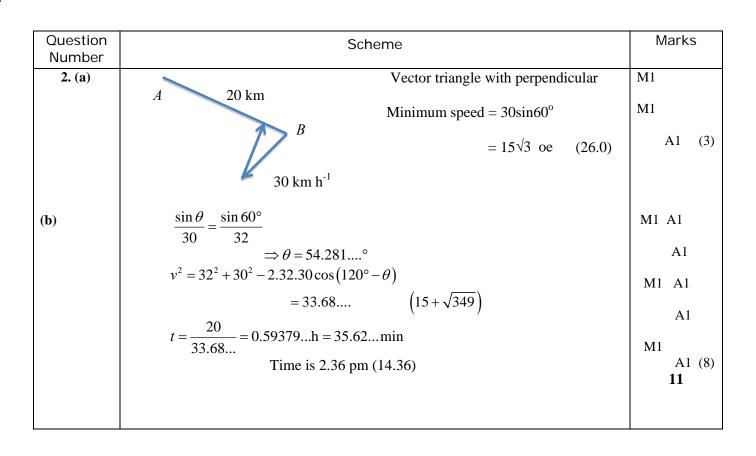
<u>'B' marks</u>

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 6. Ignore wrong working or incorrect statements following a correct answer.


(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.

N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.

- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations
 - M(A) Taking moments about A.
 - N2L Newton's Second Law (Equation of Motion)
 - NEL Newton's Experimental Law (Newton's Law of Impact)
 - HL Hooke's Law
 - SHM Simple harmonic motion
 - PCLM Principle of conservation of linear momentum
 - RHS, LHS Right hand side, left hand side.

Question Number	Scheme		Marks
1.	$v\cos 45^\circ = u\sin \alpha$ $v\sin 45^\circ = eu\cos \alpha$	parallel perpendicular	M1 A1 M1 A1
	$e = \tan \alpha$	or square & add	M1 A1
	$I = m(v\cos 45^\circ + u\cos \alpha)$ $= mu(\sin \alpha + \cos \alpha)$	impulse in terms of u , α	M1 A1 M1
	$=\frac{mu(1+e)}{\sqrt{1+e^2}}$	in terms of <i>u</i> , <i>e</i>	M1 A1
			11

Question Number	Sche	me	Marks
3.	$-(mg + mkv) = mv\frac{\mathrm{d}v}{\mathrm{d}x}$	Differential equation	M1 A1
	$\int_{0}^{H} \mathrm{d}x = \int_{U}^{0} -\frac{v}{(g+kv)} \mathrm{d}v$	Separate variables	M1
	$\int_{0}^{H} dx = -\int_{U}^{0} \frac{1}{k} - \frac{g}{k(g+kv)} dv$	Split for integration	M1 A1
	$- H = \left[\frac{-v}{k} + \frac{g}{k^2}\ln(g+kv)\right]_U^0$		A1
	$=\frac{U}{k}-\frac{g}{k^2}\ln(\frac{g+kU}{g})$	Use of limits	M1 A1
			٤

РМТ	

Question Number	Scheme		Marks
4. (a)	$mv_1 + mv_2 = mu\cos 60^\circ$	Momentum	M1 A1
	$-v_1 + v_2 = eu\cos 60^\circ$ $u(1-e)$	Impact law	M1 A1
	$v_1 = \frac{u(1-e)}{4}$ Speed of $S = \sqrt{\frac{u^2(1-e)^2}{16} + \frac{3u^2}{4}}$ speed	Solve for v_1 and find	M1 A1 A1
	$= \frac{u}{4}\sqrt{e^2 - 2e + 13}$ $\tan \theta = \frac{u\sqrt{3}}{2v_1} = \frac{2\sqrt{3}}{(1-e)}$ dirn	Use components to find	M1 A1
	S moves at $\arctan \frac{2\sqrt{3}}{(1-e)}$ to the line of centres $v_2 = \frac{u(1+e)}{4}$	v_2 in terms of u , e	M1 A1 B1 (12)
(b)	T has speed $\frac{u(1+e)}{4}$ along the line of centres	Conclusion	
	θ is a max when $e =$	1 then $\theta = 90^{\circ}$	M1 A1
	then deflection angle	is $90^\circ - 60^\circ = 30^\circ$ $\delta = 30$	A1 (3) 15

Ρ	N	Λ	Т

Question Number	Scheme		Marks
5.(a)	$-12mgl\sin\theta$ $-mg(L-4l\sin\frac{1}{2}\theta)$ $4mgl(\sin\frac{1}{2}\theta-3\sin\theta)+\text{constant}$	rod particle *given answer*	B1 M1 A1 A1 (4)
(b)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = 4mgl(\frac{1}{2}\cos\frac{1}{2}\theta - 3\cos\theta)$ $4mgl(\frac{1}{2}\cos\frac{1}{2}\theta - 3\cos\theta) = 0$ $\frac{1}{2}\cos\frac{1}{2}\theta - 3(2\cos^{2}\frac{1}{2}\theta - 1) = 0$ $\cos\frac{1}{2}\theta = \frac{3}{4} \text{ or } -\frac{2}{3}$ $\cos\theta = \frac{1}{8} \text{ or } -\frac{1}{9}$ $\theta = 1.45 \text{ as } \theta < \frac{1}{2}\pi (83.0^{\circ})$ $\frac{\mathrm{d}^{2}V}{\mathrm{d}\theta^{2}} = 4mgl(-\frac{1}{4}\sin\frac{1}{2}\theta + 3\sin\theta)$ When $\theta = 1.45$, $\frac{\mathrm{d}^{2}V}{\mathrm{d}\theta^{2}} = 11.25mgl > 0$,		M1 A1 M1 M1 A1 M1 A1 A1 M1 A1 (10) 14

PMT

Question	Scheme	Marks
Number	Scheme	ai ite
6. (a)	$-Mkv - T = M\ddot{x}$	M1 A1
	$-Mk\dot{x} - \frac{Mn^2ax}{a} = M\ddot{x}$ In terms of x	M1
	$\ddot{x} + k\dot{x} + n^2x = 0$ *Answer Given*	A1 (4)
(b)	Aux equn: $p^2 + \frac{5n}{2}p + n^2 = 0$	M1
	$p = -\frac{n}{2}$ or $-2n$	
	$x = Ae^{-\frac{n}{2}t} + Be^{-2nt}$ General solution	
	$t = 0, x = 0 \Longrightarrow 0 = A + B$	A1
	$\dot{x} = -\frac{nA}{2}e^{-\frac{n}{2}t} - 2nBe^{-2nt}$ Differentiate	B1
	$t = 0, x = U \Longrightarrow U = -\frac{nA}{2} - 2nB$	M1
		A1
	$= -\frac{2U}{n} = A + 4B$ $A = \frac{2U}{3n}; B = -\frac{2U}{3n}$ Solve for A, B	
	$x = \frac{2U}{3n} e^{-\frac{n}{2}t} - \frac{2U}{3n} e^{-2nt}$	M1
	3n $3n$	A1 (7)
(c)	$\dot{x} = \frac{U}{3} (4e^{-2nt} - e^{-\frac{n}{2}t})$	
	5	M1
	$\dot{x} = 0 \Longrightarrow 4e^{-2nt} - e^{-\frac{n}{2}t} = 0$ $e^{\frac{3n}{2}t} = 4$	M1
	$e^{2} = 4$	A1
	$x = \frac{2U}{3n} \left(2^{-\frac{2}{3}} - 2^{-\frac{8}{3}}\right) = \frac{U}{n} \left(2^{-\frac{5}{3}}\right) \qquad \left(0.31\frac{U}{n}\right)$	
		M1 A1 (5)
		16

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Mechanics M4 (6680/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code UA039503 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:

<u>'M' marks</u>

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.

e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

(i) should have the correct number of terms

(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

<u>'A' marks</u>

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. MO A1 is impossible.

<u>'B' marks</u>

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 6. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.

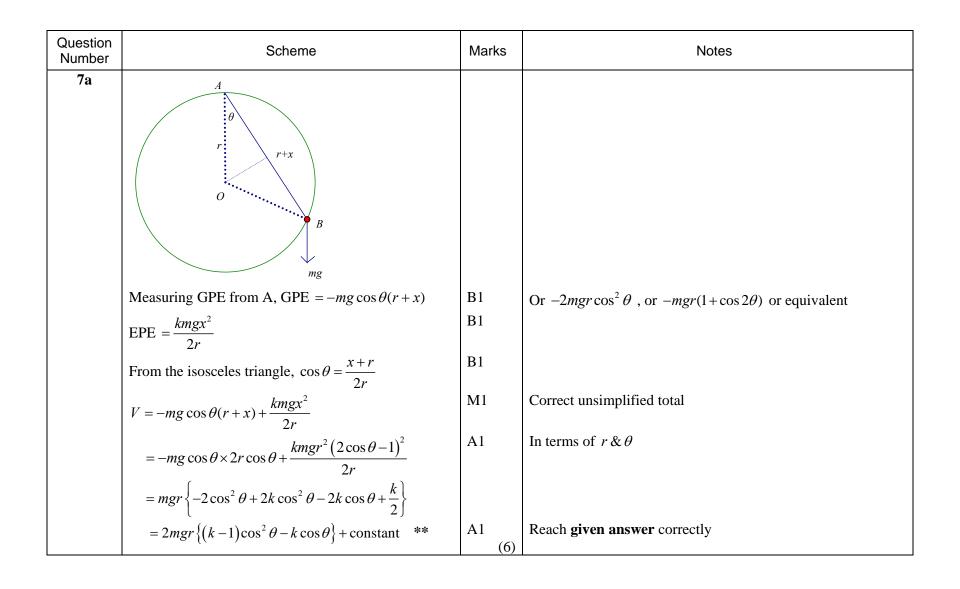
N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.

- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations
 - M(A) Taking moments about A.
 - N2L Newton's Second Law (Equation of Motion)
 - NEL Newton's Experimental Law (Newton's Law of Impact)
 - HL Hooke's Law
 - SHM Simple harmonic motion
 - PCLM Principle of conservation of linear momentum
 - RHS, LHS Right hand side, left hand side.

Question Number	Scheme	Marks	Notes
1a	$\mathbf{r}_A = (-6\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}) + t (3\mathbf{i} + \mathbf{j}) = ((-6 + 3t)\mathbf{i} + (4 + t)\mathbf{j} + (-3)\mathbf{k})$	M1	Position vector for A or B
	$\mathbf{r}_B = (-2\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) + t(\mathbf{i} - \mathbf{k}) = ((-2 + t)\mathbf{i} + (2)\mathbf{j} + (3 - t)\mathbf{k})$	A1	Both position vectors correct (seen or implied)
	${}_{B}\mathbf{r}_{A} = (-2 + \mathbf{t} + 6 - 3t)\mathbf{i} + (2 - 4 - t)\mathbf{j} + (3 - t + 3)\mathbf{k}$ $= (4 - 2t)\mathbf{i} + (-2 - t)\mathbf{j} + (6 - t)\mathbf{k}$	M1	Position of B relative to A (or A relative to B)
	$ _{B}\mathbf{r}_{A} ^{2} = (4-2t)^{2} + (t+2)^{2} + (6-t)^{2}$	M1	Use of Pythagoras
alt1	$= 6t^2 - 24t + 56 = 6(t-2)^2 + 32$	M1	Complete the square
	Minimum distance = $\sqrt{32} = 4\sqrt{2}$ m **	A1 [6]	Reach given answer correctly
	$ _{B}\mathbf{r}_{A} ^{2} = (4-2t)^{2} + (t+2)^{2} + (6-t)^{2} (= 6t^{2} - 24t + 56)$	M1	Use of Pythagoras
alt2	$12t - 24 = 0 \Longrightarrow t = 2$	M1	Differentiate and solve for <i>t</i>
	Minimum distance = $\sqrt{32} = 4\sqrt{2}$ m **	A1	Reach given answer correctly
alt3	$ \begin{pmatrix} 4-2t \\ -2-t \\ 6-t \end{pmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = 0 \Longrightarrow 8 - 4t - 2 - t + 6 - t = 12 - 6t = 0 $	M1	Scalar product of position vector with relative velocity = zero and form equation in t
	Distance $=\sqrt{0^2 + 4^2 + 4^2} = \sqrt{32} = 4\sqrt{2}$	M1	Use of Pythagoras
		A1	Reach given answer correctly
1b	When $t = 2$,	B1	Seen or implied
	$\mathbf{r}_A = 6\mathbf{j} - 3\mathbf{k}$	B1 [2]	cso

Question Number	Scheme	Marks	Notes
2a	$\frac{P}{v} - 10v = ma; \frac{25000}{v} - 10v = 1000a$	M1	Equation of motion
	$v = 20$, (m s ⁻²) $a = \frac{\frac{25000}{20} - 10 \times 20}{1000} = \frac{\frac{25}{2} - 2}{10}$	DM1 A1	Substitute $v = 20$
	$= 1.05 \text{ (m s}^{-2}) **$	[3] M1	Obtain given answer correctly Differential equation in <i>v</i> and <i>x</i>
2b	$v\frac{\mathrm{d}v}{\mathrm{d}x} = \frac{\frac{25000}{v} - 10v}{1000} = \frac{25000 - 10v^2}{1000v} = \frac{2500 - v^2}{100v}$	A1	Any equivalent form
	$\int \frac{100v^2}{2500 - v^2} dv = \int 1 dx \qquad \left(= 100 \int -1 + \frac{2500}{2500 - v^2} dv \right)$	M1	Separate the variables
alt1	$=100\int -1 + \frac{25}{50 - v} + \frac{25}{50 + v}dv$	DM1 A1	Split using partial fractions Or equivalent
	$x(+C) = 100 \left\{ -v + 25 \ln \left \frac{50 + v}{50 - v} \right \right\}$	A1	Integration correct
	$x = 100 \left(-20 + 25 \ln \frac{70}{30} \right) - 100 \left(-10 + 25 \ln \frac{60}{40} \right) = 105 (\text{m})$	DM1 A1 [8]	Correct use of limits Or better $\left(2500 \ln\left(\frac{14}{9}\right) - 1000\right)$
alt2	$=100\left(v-50\operatorname{arc}\tanh\left(\frac{v}{50}\right)\right)$	DM1 A1	Use of arctanh correct
	$x(+C) = 100 \left\{ -v + 25 \ln \left \frac{50 + v}{50 - v} \right \right\}$	A1	Convert to log form
	$x = 100 \left(-20 + 25 \ln \frac{70}{30} \right) - 100 \left(-10 + 25 \ln \frac{60}{40} \right) = 105 (\text{m})$	DM1 A1	Correct use of limits Or better $\left(2500\ln\left(\frac{14}{9}\right) - 1000\right)$
	NB A correct numerical answer that does not follow from integration scores no marks.		

Question Number	Scheme	Marks	Notes
3 alt1	$\frac{\frac{y}{3}}{x}$		
	Speed perpendicular to wall after collision = $\frac{y}{3}$	B1	
	Speed parallel to the wall is unchanged	B1	
	$\frac{1}{2}(x^2 + y^2) = x^2 + \frac{1}{9}y^2$	M1	Use the speeds to form an equation in $x \& y$ (or equivalent)
	2 $(1) (1) (1) (1) (1) (1) (1) (1$	A1	Correct unsimplified
	$9(x^{2} + y^{2}) = 2(9x^{2} + y^{2}), \ 9x^{2} = 7y^{2}, \ x = \frac{\sqrt{7}}{3}y$	A1	Correct ratio for $x \& y$ (any equivalent form)
	direction deflected by $\tan^{-1}\frac{y}{x} + \tan^{-1}\frac{y}{3x}$	M1 A1	To find the correct angle Correct in $x \& y$
	$= \tan^{-1} \sqrt{\frac{27}{5}} + \tan^{-1} \sqrt{\frac{3}{5}} = 104.5^{\circ} (104)$	A1 [8]	


Question Number	Scheme	Marks	Notes
4a	20 km A AVB A 1453 6 12 km h ⁻¹		
	Relative velocity triangle	M1	Seen or implied
	$\frac{\sin 145}{12} = \frac{\sin \theta}{6}, \ \theta = 16.7^{\circ}$	M1	Use of trig to find a relevant angle
	Bearing = $15 + (180 - 145 - 16.7) = 33.3^{\circ}$	M1	To find the required angle
	Bearing 033°	A1 [4	They were asked for an answer "to the nearest degree". Accept N 33° E
4b	$\frac{{}_{\scriptscriptstyle A}v_{\scriptscriptstyle B}}{\sin 18.3} = \frac{12}{\sin 145}$	M1	Correct method to find the relative velocity
	$_{A}v_{B} = 6.58 (\mathrm{km}\mathrm{h}^{-1})$	A1	
	Time taken = $\frac{20}{6.58}$ (hrs)	M1	For their 6.58
	Time is 3:02 pm (1502)	A1 [4]

Question Number	Scheme	Marks	Notes
5a	Before $3u\sin\alpha$ $u\sin\beta$		
	a $B(3m)$ u		
	After $3u$ x y $usin\beta$		
	CLM: $mx + 3my = 3m \times u \cos \beta - m \times 3u \cos \alpha = mu \ (x + 3y = u)$	M1 A1	Terms of correct structure but condone sign errors
	NEL: $x - y = \frac{1}{5} (3u \cos \alpha + u \cos \beta) \left(= \frac{1}{5} \left(u + \frac{2}{3}u \right) = \frac{1}{3}u \right)$	M1	equation of correct structure but condone sign errors
	$x = \frac{u}{2}$, or $y = \frac{u}{6}$	A1 DM1 A1	Dependent on the two previous M marks. Solve for x or y
	Magnitude of the impulse on $A = mu - \left(m \times -\frac{u}{2}\right) = \frac{3mu}{2}$	M1 A1 [8]	Correct for their <i>x</i> or <i>y</i> Must be positive

PMT

Question Number	Scheme	Marks	Notes
5b	Component of velocity perpendicular to the line of centres before = component after = $3u \sin \alpha = 3u \times \frac{\sqrt{8}}{3} = \sqrt{8}u$	B1	
	KE lost = $\frac{m}{2} \left(9u^2 - \left(8u^2 + \frac{1}{4}u^2 \right) \right) \left[= \frac{3}{8}mu^2 \right]$	M1	Change in KE. Does not need to be a fraction at this stage. Does not need to include the (cancelling) component perpendicular to the line of centre. Correct unsimplified
	Fraction lost = $\frac{\frac{3}{8}}{\frac{9}{2}} = \frac{3}{8} \times \frac{2}{9} = \frac{1}{12}$	A1 [4]	

Question Number	Scheme	Marks	Notes
60	$m\ddot{x} = 4mv - \frac{5ma \times x}{a} \qquad v = -\dot{x}$	M1	Equation of motion as far as $m\ddot{x} = \pm 4mv - T$
6a	$mx = 4mv - \frac{a}{a} \qquad v = -x$	M1	Use of $v = -\dot{x}$
	$\ddot{x} + 4\dot{x} + 5x = 0 **$	A1 [3]	Reach given answer correctly.
6b	AE $m^2 + 4m + 5 = 0$, $m = \frac{-4 \pm \sqrt{4^2 - 4 \times 5}}{2} = -2 \pm i$	M1	Solve AE to find GS
	$x = e^{-2t} \left(A \cos t + B \sin t \right)$	A1	
	t = 0, x = a = A	M1	Use $t = 0, x = a$ to find A
		A1	
	$\dot{x} = -2e^{-2t} \left(a \cos t + B \sin t \right) + e^{-2t} \left(-a \sin t + B \cos t \right)$	M1	Differentiate and use boundary conditions to find B
	$t = 0$, $\dot{x} = 0 = -2a + B \ x = e^{-2t} (a \cos t + 2a \sin t)$	A1 [6]	
6с	String goes slack when $x = e^{-2t} (a \cos t + 2a \sin t) = 0$		
	$\cos t = -2\sin t$, $\tan t = -\frac{1}{2}$	M1	Set $x = 0$ and solve for t or $\tan t$
	$\cos t = -2\sin t, \tan t = -\frac{1}{2}$	A1	
	$\dot{x} = -2e^{-2t} \left(a\cos t + 2a\sin t \right) + e^{-2t} \left(-a\sin t + 2a\cos t \right)$	M1	Substitute a positive value of t to find the speed. An answer of 0.88 indicates a negative <i>t</i> .
	$= e^{-2t} (-5a \sin t) = -0.01a$ Speed $= 0.011a (ms^{-1})$	A1	The question specifies 2 sf
		[4]	

Question Number	Scheme	Marks	Notes
7b	$V = 2mgr(2\cos^2\theta - 3\cos\theta) + \text{constant}$		
	$V = 2mgr(2\cos^2\theta - 3\cos\theta) + \text{constant}$ $V' = 2mgr(-4\cos\theta\sin\theta + 3\sin\theta)$	M1 A1	Differentiate V
	$V' = 0 \Longrightarrow \sin \theta = 0 \text{ or } \cos \theta = \frac{3}{4}$	M1	Derivative = 0 and solve for θ
	$\theta = 0$ or $\theta = \pm 0.72$ rads	A3	-1 for each missing solution
	$V'' = 2mgr(-4\cos 2\theta + 3\cos \theta)$	M1	Second derivative of V
	$\theta = 0, V'' = -2mgr < 0$, unstable equilibrium	A1	Need to see $-2mgr$ or equivalent
	$\cos\theta = \frac{3}{4}, V'' = \frac{7mgr}{2} > 0$, stable equilibrium	A1 (9)	Do not need to consider the symmetrical position as well

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 $\,$

Mark Scheme (Results)

Summer 2015

Pearson Edexcel GCE in Mechanics 4 (6680/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code UA042157 All the material in this publication is copyright © Pearson Education Ltd 2015 PhysicsAndMathsTutor.com

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:

<u>'M' marks</u>

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.

e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc. The following criteria are usually applied to the equation.

To earn the M mark, the equation

(i) should have the correct number of terms

(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

<u>'A' marks</u>

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. MO A1 is impossible.

<u>'B' marks</u>

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.

N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.

- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations
 - M(A) Taking moments about A.
 - N2L Newton's Second Law (Equation of Motion)
 - NEL Newton's Experimental Law (Newton's Law of Impact)
 - HL Hooke's Law
 - SHM Simple harmonic motion
 - PCLM Principle of conservation of linear momentum
 - RHS, LHS Right hand side, left hand side.

June 2015 6680 Mechanics 4 Mark Scheme

Question Number	Scheme	Marks	Notes
1	$\mathbf{r}_{p} - \mathbf{r}_{Q}$	M1	Find position vector of one particle relative to the other . $\mathbf{r}_{p} = \begin{pmatrix} 16+t\\ -12+2t \end{pmatrix}, \ \mathbf{r}_{Q} = \begin{pmatrix} -5+2t\\ 4+t \end{pmatrix}$
	$= \begin{pmatrix} 21-t\\ -16+t \end{pmatrix}$	A1	Accept +/-
	$d^{2} = (21-t)^{2} + (-16+t)^{2}$		Pythagoras
	$d^{2} = (21-t)^{2} + (-16+t)^{2}$ $\frac{d}{dt}d^{2} = -2(21-t) + 2(-16+t)(=-74+4t)$	M1	Differentiate d or d^2 wrt t
		M1	Set derivative = 0 and solve for t
	Min when $t = 18.5(s)$	A1	
	Relative position $\begin{pmatrix} 2.5\\ 2.5 \end{pmatrix}$, distance $\sqrt{2.5^2 + 2.5^2}$ (m) = $\sqrt{\frac{25}{2}} = 3.54$ (m)	M1	Substitute their <i>t</i> to find <i>d</i>
	$=\sqrt{\frac{25}{2}}=3.54$ (m)	A1	
		[7]	
	See over for alternatives.		

$\mathbf{r}_{p} - \mathbf{r}_{Q}$		
P Q	M1	Position of <i>P</i> relative to <i>Q</i>
$= \begin{pmatrix} 21-t\\ -16+t \end{pmatrix}$	A1	Accept +/-
$d^{2} = (21-t)^{2} + (-16+t)^{2} (= 2t^{2} - 74t + 697)$	M1	Use Pythagoras to express d^2 as a quadratic in t
	M1	Complete the square
$2(t-18.5)^2-684.5+697$	A1	
Min $d^2 = 697 - 684.5$	M1	Use completed square to find minimum value for their expression
Min. $d = \sqrt{697 - 684.5} = \sqrt{12.5}$	A1	-
$\mathbf{r}_{p} - \mathbf{r}_{Q}$	M1	Position of <i>P</i> relative to <i>Q</i>
$= \begin{pmatrix} 21-t\\ -16+t \end{pmatrix}$	A1	Accept +/-
Relative velocity $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$	M1	
$\binom{21-t}{-16+t} \cdot \binom{-1}{1} = -(21-t) + (-16+t) = 0,$	M1	Set scalar product of relative position and relative velocity = 0 and solve for <i>t</i> .
t = 18.5 (s)	A1	
Relative position $\begin{pmatrix} 2.5\\ 2.5 \end{pmatrix}$, distance $\sqrt{2.5^2 + 2.5^2}$ (m)	M1	Substitute their <i>t</i> to find <i>d</i>
$=\sqrt{\frac{25}{2}}=3.54$ (m)	A1	
See over for alternative		
	$\begin{aligned} & \text{Iin } d^2 = 697 - 684.5 \\ & \text{Iin. } d = \sqrt{697 - 684.5} = \sqrt{12.5} \\ & & \text{Iin. } d = \sqrt{697 - 684.5} = \sqrt{12.5} \\ & & \text{Iin. } d = \sqrt{697 - 684.5} = \sqrt{12.5} \\ & & \text{Iin. } d = \sqrt{697 - 684.5} = \sqrt{12.5} \\ & & \text{Iin. } d = \sqrt{697 - 684.5} = \sqrt{12.5} \\ & & \text{Iin. } d = \sqrt{697 - 684.5} = \sqrt{12.5} \\ & & \text{Iin. } d = \sqrt{697 - 684.5} = \sqrt{12.5} \\ & & \text{Iin. } d = \sqrt{697 - 684.5} = \sqrt{12.5} \\ & & \text{Iin. } d = \sqrt{697 - 684.5} = \sqrt{12.5} \\ & & \text{Iin. } d = \sqrt{697 - 684.5} = \sqrt{12.5} \\ & & \text{Iin. } d = \sqrt{697 - 684.5} = \sqrt{12.5} \\ & & \text{Iin. } d = \sqrt{697 - 684.5} = \sqrt{12.5} \\ & & \text{Iin. } d = \sqrt{697 - 684.5} = \sqrt{12.5} \\ & & \text{Iin. } d = \sqrt{697 - 684.5} = \sqrt{12.5} \\ & & \text{Iin. } d = \sqrt{697 - 684.5} = \sqrt{12.5} \\ & & \text{Iin. } d = \sqrt{697 - 684.5} = \sqrt{12.5} \\ & & \text{Iin. } d = \sqrt{697 - 684.5} \\ & & \text{Iin. } d = \sqrt$	Iin $d^2 = 697 - 684.5$ M1 Iin. $d = \sqrt{697 - 684.5} = \sqrt{12.5}$ A1 $b - \mathbf{r}_Q$ M1 $\begin{pmatrix} 21 - t \\ -16 + t \end{pmatrix}$ A1 elative velocity $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ M1 $\begin{pmatrix} 21 - t \\ -16 + t \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix} = -(21 - t) + (-16 + t) = 0,$ M1 $\begin{pmatrix} 21 - t \\ -16 + t \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix} = -(21 - t) + (-16 + t) = 0,$ M1 $t = 18.5$ (s) A1 elative position $\begin{pmatrix} 2.5 \\ 2.5 \end{pmatrix}$, distance $\sqrt{2.5^2 + 2.5^2}$ (m) M1 $= \sqrt{\frac{25}{2}} = 3.54$ (m) A1

Question Number	Scheme	Marks	Notes
alt 3	$\mathbf{r}_{P} - \mathbf{r}_{Q}$	M1	Initial position of P relative to Q
	$= \begin{pmatrix} 21\\ -16 \end{pmatrix}$	A1	Accept +/-
	Relative velocity $\begin{pmatrix} -1\\ 1 \end{pmatrix}$	M1	
		M1	Use scalar product to find $\cos \theta$
	$\cos\theta = \frac{-37}{\sqrt{2}\sqrt{687}}$ (-0.998)	A1	Accept +/-
	$d = PQ\sin\theta$	M1	Use trig to find distance
	$=\sqrt{697} \times \sqrt{1 - \frac{37^2}{2 \times 697}} = \frac{5}{\sqrt{2}} \approx 3.54$	A1	
		[7]	

Question Number	Scheme	Marks	Notes
2		B1	Either triangle of velocities
		M1	Two triangles combined using their common velocity
	4 w v	A1	Correct diagram seen or implied
	Correct method to obtain one of v, w, θ	M1	$(v = 16, w = 16.5, \theta = 76^{\circ})$ Make it dependent?
	speed is 16.5(km h ⁻¹)	A1	4√17
	Direction S 76° E or equivalent	A1	104°
		[6]	
Alt	Velocity of wind $= w$		
	$w = -v\mathbf{i} + 4\mathbf{j}$	B1	one correct equation
	$w = a\mathbf{i} + b\mathbf{j} - 8\mathbf{j}$ $a^2 + b^2 = 400$	M1	2 nd equation and compare coefficients
	coeff j : $4 = b - 8$ $b = 12$	A1	2 correct eqns
	$\mathbf{i}: -v = a$		
	$a^2 + 144 = 400 \implies a = -16 \qquad (v > 0)$	M1	
	$ w = \sqrt{4^2 + 16^2} = 4\sqrt{17}$	A1	
	Bearing 104°	A1	

Question Number	Scheme	Marks	Notes
3	$3u\sin\theta$ $u\cos\theta$ $u\cos\theta$ $u\sin\theta$ $u\sin\theta$ $u\sin\theta$ $u\sin\theta$ $u\sin\theta$		
	After collision $u\sin\theta$ and $3u\sin\theta$ perpendicular to l of c	B1	
	$\operatorname{CLM}: r + 2s = 3u\cos\theta - 2u\cos\theta (= u\cos\theta)$	M1	Requires all four terms but condone sign errors.
		A1	Correct unsimplified equation
	Impact: $s - r = e \times 4u \cos \theta \left(= \frac{u \cos \theta}{2} \right)$	M1	Must be the right way round, but condone sign errors
		A1	Correct unsimplified equation
	$\Rightarrow r = 0, s = \frac{u\cos\theta}{2}$	DM1	Solve the simultaneous equations to find the horizontal components of velocities. Dependent on the two preceding M marks
		A1	Both correct
	After the collision: $(3u\sin\theta)^2 + r^2 = 4((u\sin\theta)^2 + s^2)$	M1	Use $v_A = 2v_B$. Condone 2 on the wrong side?
		A1	Correct unsimplified equation (their <i>r</i> and <i>s</i>)
	$9u^2\sin^2\theta = 4u^2\sin^2\theta + 4.\frac{u^2}{4}\cos^2\theta$	A1	Obtain an equation in θ
	$\tan^2 \theta = \frac{1}{5}, \theta = 24.1(^\circ) (0.421 \text{ radians})$	DM1	Solve for θ . Dependent on the previous M1
		A1	Correct to 3 sf or better

Question Number	Scheme	Marks	Notes
3 alt	For those who prefer everything with trig:		
	$v_A \sin \alpha = 3u \sin \theta$, $v_B \sin \beta = u \sin \theta$	B 1	Perpendicular to the l.o.c.
	$m.3u\cos\theta - 2m.u\cos\theta = mv_A\cos\alpha + 2mv_B\cos\beta$	M1	CLM
	$\left(u\cos\theta = v_A\cos\alpha + 2v_B\cos\beta\right)$	A1	
	$\frac{1}{8} \times (3u\cos\theta + u\cos\theta) = v_B\cos\beta - v_A\cos\alpha$	M1	Impact law
	$\left(\frac{u}{2}\cos\theta = v_B\cos\beta - v_A\cos\alpha\right)$	A 1	
	$\frac{u}{2}\cos\theta = v_B\cos\beta \ , \ 0 = v_A\cos\alpha (\Rightarrow \sin\alpha = 1)$	DM1	Simultaneous equations
		A1	
	$v_A \sin \alpha = v_A = 2v_B = 3u \sin \theta$	M1	Use $v_A = 2v_B$ to find β
	$v_B \sin \beta = u \sin \theta \Longrightarrow \frac{3u \sin \theta}{2} \sin \beta = u \sin \theta$	A1	
	$\sin\beta = \frac{2}{3}$	A1	
	$2v_{B} = 3u \sin \theta \& \frac{u}{2} \cos \theta = v_{B} \cos \beta$ $\Rightarrow 6 \tan \theta = \frac{2}{\cos \beta} \left(= 2 \times \frac{3}{\sqrt{5}} \right)$ $\tan \theta = \frac{1}{\sqrt{5}} , \theta = 24.1(^{\circ}) (0.421 \text{ radians})$	M1	Solve for θ
	$\tan \theta = \frac{1}{\sqrt{5}}$, $\theta = 24.1(^\circ)$ (0.421 radians)	A1	
		[12]	
		<u> </u>	

Question Number	Scheme	Marks	Notes
4 a	Equation of motion: $900a = \frac{22500}{v} - 25v$	M1	Requires all three terms. Condone sign errors
		A1	Correct unsimplified equation
	$a = \frac{\frac{22500}{v} - 25v}{900} = \frac{900 - v^2}{36v}$	A1	Obtain **Given answer** with no errors seen
	$a = \frac{1}{900} = \frac{1}{36v}$	[3]	
4 b	$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{900 - v^2}{36v}$	B1	Differential equation in v and t
	$\int \frac{36v}{900 - v^2} dv = \int 1 dt ,$	M1	Separate & integrate
	$t = -18\ln(900 - v^2)(+C)$	A1	
	: $T = -18\ln 500 + 18\ln 800 = 18\ln \frac{8}{5}$	M1	Use limits correctly Dependent?
		A1	Obtain **Given answer** with no errors seen
		[5]	
4 c	$\frac{900-v^2}{36v} = v\frac{\mathrm{d}v}{\mathrm{d}x}$	B1	Differential equation in v and x
	$\frac{900 - v^2}{36v} = v \frac{dv}{dx}$ $\int \frac{v^2}{900 - v^2} dv = \int \frac{1}{36} dx$	M1	Separate variables
	$= \int \frac{900}{900 - v^2} - 1 dv = \left(\int \frac{900}{60} \left(\frac{1}{30 - v} + \frac{1}{30 + v} \right) - 1 dv \right)$	M1	Use partial fractions or equivalent
	$15\ln\left \frac{30+v}{30-v}\right - v = \frac{x}{36}(+C)$	A1	
	$15\ln\left(\frac{50}{10} \times \frac{20}{40}\right) - (20 - 10) = \frac{x}{36}$	M1	Use limits and solve for x Dependent?
	$x = 135 \text{ (m)} (540 \ln 2.5 - 360)$	A1	
		[6]	
		(14)	

Question Number	Scheme	Marks	Notes
5a	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Extension in $AP: 2+x$, Extension in $BP: 3+\frac{1}{4}\sin 2t - x - 1$
	$T_1 = \frac{12(2+x)}{1}$	B1	Force towards A
	$T_2 = 12\left(2 + \frac{1}{4}\sin 2t - x\right)$	B1	Force towards <i>B</i>
	$1.5\frac{d^2x}{dt^2} = T_2 - T_1 = 3\sin 2t - 24x$	M1	Form equation of motion of <i>P</i> . Requires derivative and both tensions, but condone sign errors.
		A1	
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 16x = 2\sin 2t$	A1	Obtain ***given answer*** with no errors seen.
		[5]	
5b	$t = 0, x = 0 \implies C = 0$	B1	
	$t = 0, x = 0 \implies C = 0$ $t = 0, \dot{x} = 0 = 4D\cos 4t + \frac{1}{3}\cos 2t$	M1	
	$D = -\frac{1}{12}$	A1	
	$\dot{x} = 0 \Longrightarrow \cos 4t = \cos 2t$	M1	At rest: set $\dot{x} = 0$
	$2\cos^2 2t - 1 = \cos 2t$		
	$\cos 2t = 1, -\frac{1}{2}$ $2t = \frac{2\pi}{3}, t = \frac{\pi}{3}$ (1.05)	A1	Not $\frac{1}{2}\cos^{-1}\left(\frac{-1}{2}\right)$?
		[5]	

Question Number	Scheme	Marks	Notes
6a	$\sqrt{6}m$		
	GPE of the ring: $-2mgr\cos 2\theta$	B1	
	GPE of suspended particles: $-\sqrt{6}mg(L_1-a) - \sqrt{6}mg(L_2-b)$	M1	Expression of the correct structure involving their L_1 , L_2 , a and b
	$q = 2\pi \sin(45 - \theta) = \frac{2r}{r} (\cos \theta - \sin \theta)$	A1	Correct expression for <i>BR</i> in terms of <i>r</i> and θ
	$a = 2r\sin(45 - \theta) = \frac{2r}{\sqrt{2}}(\cos\theta - \sin\theta)$		Accept $r\sqrt{2(1-\sin 2\theta)}$
	$b = 2r\cos(45 - \theta) = \frac{2r}{\sqrt{2}}(\cos\theta + \sin\theta)$	A1	Correct expression for AR in terms of r and θ
	$v = 2i \cos(45 - v) = \sqrt{2} (\cos v + \sin v)$		Accept $r\sqrt{2(1+\sin 2\theta)}$
	GPE of system:	DM1	Add the three components.
	$-\sqrt{6}mg(L_1-a)-\sqrt{6}mg(L_2-b)-2mgr\cos 2\theta$		Dependent on the previous M
	$=2\times\frac{2r}{\sqrt{2}}\cos\theta\times\sqrt{6}mg-2mgr\cos2\theta+\text{constant}$		
	$= 2mgr(2\sqrt{3}\cos\theta - \cos 2\theta) + \text{ constant}$	A1	Simplify to the given answer
		[6]	

Question Number	Scheme	Marks	Notes
6b	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = -4\sqrt{3} mgr \mathrm{in}\theta + 4mgr \mathrm{sin}2\theta$	M1	Differentiate
	In equilibrium: $\frac{dV}{d\theta} = 0 = 4mgr\sin\theta\left(-\sqrt{3} + 2\cos\theta\right)$	M1	Set $\frac{\mathrm{d}V}{\mathrm{d}\theta} = 0$ and solve for θ
	$\theta = \pm \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \pm \frac{\pi}{6} (=\pm 0.52)$	A1	
	or $\theta = 0$	B1	
		[4]	
6с	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = -4\sqrt{3}mgr\cos\theta + 8mgr\left(\cos^2\theta - \sin^2\theta\right)$	M1	Second derivative - needs to be the full expression.
	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = mgr\left(-4\sqrt{3}\times\frac{\sqrt{3}}{2} + 8\left(\frac{3}{4} - \frac{1}{2}\right)\right) = -2mgr < 0$	M1	Substitute $\theta = \frac{\pi}{6}$
	So equilibrium is unstable	A1	No errors seen
		[3]	
		(13)	
		-	
I			

Question Number	Scheme	Marks	Notes
7a	Resolve parallel to barrier - condone sin/cos confusion	M1	w C
	$u\cos 60 = v\cos \theta$	A1	
	Resolve perpendicular to the barrier - condone sin/cos confusion	M1	u v
	$eu\sin 60 = v\sin \theta$	A1	$A = \frac{120^{\circ}}{B}$
	$v^{2} = u^{2}\cos^{2}60 + e^{2}u^{2}\sin^{2}60 = \frac{u^{2}}{4} + \frac{3u^{2}}{16} = \frac{7u^{2}}{16}$	M1	Eliminate θ and solve for <i>v</i> .
	$v = \frac{\sqrt{7}}{4}u$	A1	Obtain given answer correctly with no errors seen
		[6]	
7b	Angle of approach with $BC = 19.1^{\circ}$	B1	
	$v\cos 19.1 = w\cos\phi$	M1	Components parallel to BC
	$\frac{1}{2}v\sin 19.1 = w\sin\phi$	M1	Components perpendicular to BC
		A1	Equations correct for their 19.1
	Form equation in v and ϕ	M1	Square and add or divide to find $tan \phi$
	$w^2 = v^2 \left(\frac{1}{4}\sin^2 19.1 + \cos^2 19.1\right)$	A1	$(\phi = 9.83^\circ)$ Follow their 19,1?
	0.634 <i>u</i>	A1	
7balt	$\tan\theta = \frac{1}{2}\tan 60$	B1	

Question Number	Scheme	Marks	Notes
	$\tan \alpha = \frac{1}{2} \tan \left(60 - \theta \right) \left(= \frac{1}{2} \left(\frac{\sqrt{3} - \frac{1}{2}\sqrt{3}}{1 + \sqrt{3} \cdot \frac{1}{2}\sqrt{3}} \right) = \frac{\sqrt{3}}{10} \right)$	M1	
		A1	
	$v\cos(60-\theta) = w\cos\alpha$	M1	
	$v\left(\frac{1}{2} \cdot \frac{2}{\sqrt{7}} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{\sqrt{7}}\right) = w\frac{10}{\sqrt{103}}\left(=v\frac{5}{2\sqrt{7}}\right)$	M1	
		A1	
	$w = \frac{\sqrt{103}}{4\sqrt{7}}v = \frac{\sqrt{103}}{4\sqrt{7}} \cdot \frac{\sqrt{7}}{4}u = \frac{\sqrt{103}}{16}u \qquad (0.634u)$	A1	
		[7]	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom